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Abstract

In this review, we are reviewing single nucleotide bases using Attenuated 
Total Reflectance (ATR–FTIR) spectra before moving onto more complex 
oligionucleotides and ultimately DNA/RNA. This work will lay a foundation to 
understanding the spectroscopy of DNA/RNA in response to hydration and has 
important implications for understanding how cells respond to environmental 
stresses such as dehydration. Also, we are using quantum chemical methods 
to model DNA/RNA conformation to predict the frequencies and intensity 
differences in ATR–FTIR spectra. The computational review will initially focus on 
modelling small– to medium–sized oligonucleotides with the view of correlating 
predicted results with experimental spectra of these oligonucleotides. The effect 
of explicit and implicit solvent will be reviewed concurrently.
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the cell nucleus and partly inside organelles; the examples of the latter 
are mitochondria or chloroplasts [3]. On the contrary, in prokaryotes 
(i.e., bacteria), DNA is stored just in the cytoplasm. It should be 
added that compaction and management of DNA is occurred inside 
the chromosomes by chromatin proteins such as histones. The 
interactions between DNA and other proteins are guided by these 
compact structures, which assist in controlling which parts of the 
DNA are copied (Figures 2 & 3).

History of DNA Research
The Swiss physician, Friedrich Miescher, was the first one who 

identified DNA in 1869. He discovered microscopic matter in the pus 
of disposed surgery bandages. He named it “nuclein” due to the fact 
that it was located inside the cell nuclei [4]. Later on in 1878, Albrecht 
Kossel, identified the non–protein part of “nuclein” (i.e. nucleic 

Background
Deoxyribonucleic acid (DNA) is the fundamental molecule of life 

encoding the genetic code for the development and functioning of 
every living organism and a large variety of viruses. RNA, proteins, 
and DNA are the main macromolecules, which are necessary for 
every form of life. The genetic system is encoded in the form of a 
sequence of nucleotides (guanine, adenine, thymine, and cytosine), 
which are denoted by the letters G, A, T, and C. Most DNA molecules 
consist of double–stranded helices (Figure 1) [1], composed of two 
long polymers made of simple units named nucleotides, molecules 
with backbones constructed of alternating sugars (deoxyribose) and 
phosphate groups (relative of phosphoric acid), with the nucleobases 
(G, A, T, C) joined to the sugars. DNA is a suitable store for biological 
information, because the DNA backbone resists cleavage and the 
double–stranded structure allows the molecule to have a built–in 
duplicate of the encoded data.

In DNA, the two strands are located in opposite directions to each 
other. Consequently, these strands are anti–parallel; one backbone 
is 3’ (three prime) and the other 5’ (five prime). This presents the 
direction of the 3rd and the 5th carbon, which is facing on the sugar 
molecule. One of four types of molecules named nucleobases is 
attached to each sugar (bases). Data is encoded based on the sequence 
of these four nucleobases placed along the backbone. The genetic 
code is then used to read this information. In fact the genetic code 
tries to determine the sequence of the amino acids inside proteins [2]. 
The code is read by transcribing extensions of DNA into the related 
nucleic acid RNA.

DNA is structured in chromosomes as long structures inside cells. 
In the process of cell division, these chromosomes are duplicated in a 
process called DNA replication. This process fully furnishes each cell 
with its full–required set of chromosomes. In eukaryotic organisms 
(animals, plants, fungi, and protists), most of DNA is stored inside 
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Figure 1: Modelling of section of a DNA double helix [1].
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acid) and its five primary nucleobases [5]. In 1919, Phoebus Levene, 
discovered the base, sugar and phosphate nucleotide unit [6]. Levene 
believed that DNA comprised of a chain of nucleotide units, which 
are connected together by the phosphate groups. It should be added 
that Levene believed that the string was short and the repetition of 
bases occurred in a fixed state. It was William Astbury who created 
the first X–ray diffraction patterns in 1937. These patterns showed 
that DNA is regularly structured [7].

Nikolai Koltsov suggested in 1927 that descended traits were 
descended through a “giant hereditary molecule” constituted of “two 
mirror strands that would replicate in a semi–conservative fashion 
using each strand as a template” [8, 9]. Avery et al. were first to 

develop a system that clearly showed that DNA held genetic data—
the Avery–MacLeod–McCarty experiment. They found in 1943 that 
DNA was the storage vector for genetic data [10]. It was in 1952 
that the role of DNA in heredity was proved by Alfred Hershey and 
Martha Chase. The Hershey–Chase experiment demonstrated that 
DNA was the genetic material of the T2 phage [11].

In the journal “Nature” in 1953, James D. Watson and Francis 
Crick proposed what was later known as the first correct double–helix 
model of DNA structure [12]. At that time, they based their double–
helix, molecular model of DNA on a single X–ray diffraction image 
(named “Photo 51”) [13], taken in May 1952 by Rosalind Franklin 
and Raymond Gosling, and Erwin Chargaff’s information provided 
to them through private contact in the previous years, suggesting 
that the DNA has paired bases. Chargaff highly contributed to the 
understanding of double–helix configurations of B–DNA and A–
DNA (see section 4).

In the same issue of “Nature” five papers were presented, which 
provided experimental evidence in support of the model proposed 
by the Watson and Crick [14]. One of these was a research paper by 
Franklin and Gosling, which presented their X–ray diffraction data, 
and the original analysis approach that supported the Watson and 
Crick’s model to some extent [15,16]. This issue also presented a 
paper on DNA structure by Maurice Wilkins et al. Their analysis and 
in vivo B–DNA X–ray patterns supported in vivo presence of double–
helical DNA configurations, suggested by Crick and Watson for their 
double–helix molecular model of DNA in another article in the same 
issue of “Nature” [17].

Watson, Crick, and Wilkins were jointly awarded the Nobel 
Prize in Physiology and Medicine in 1962, unfortunately after the 
death of Franklin [18]. At that time Nobel Prizes were not awarded 
posthumously. To whom the discovery is to be attributed is still the 
subject of debate [19].

In an important representation in 1957, Crick founded the 
principal dogma of molecular biology, suggesting how DNA, RNA, 
and proteins are related, and establishing the “adaptor hypothesis” 
[20]. A year later in 1958, in an experiment by Meselson–Stahl the 
final evidence for the replication mechanism as an implication of 
the double–helical structure was obtained [21]. More studies by 
Crick et al. affirmed that non–overlapping triplets of bases, called 
codons, are the basis of the genetic code [21,22]. This enabled Har 
Gobind Khorana, Robert W. Holley and Marshall Warren Nirenberg 
to decode the genetic code [22]. All of these findings constitute the 
formation of a discipline called molecular biology.

Structure
The structure of DNA of every species consists of two helical 

chains. Each of them is wound around the same axis, and each of has 
a pitch of 3.4 nm and a radius of 10 ångströms (1.0 nanometers) [12]. 
Another study suggested that when the DNA chain is measured in a 
specific approach, its width is between 2.2 to 2.6 nm, and length of a 
nucleotide unit was 0.33 nm [23]. Each individual repeating unit is 
very small, but considering the number of nucleotides, it is possible 
to have DNA polymers made from big molecules. For example, 
the largest human chromosome, i.e., chromosome 1, is around 220 
million base pairs long [24].

Figure 2: The schematic structure of DNA double helix. Different atoms in the 
structure are presented using color codes. Lower right is detailed structure of 
two base pairs [2].

Figure 3: The schematic structure of section of a DNA double helix [2].
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In living organisms, there are usually no individual DNA 
molecules. However there are some paired molecules, which are 
strongly bound [25,26]. These two long strands are twisted in the 
same way as vines do to form a double helix shape. The nucleotide 
repetitions comprise the part of the molecule backbone, binding 
the chains together, as well as nucleobase that is in interaction with 
the other DNA strand in the double helix. A nucleobase, which is 
connected to a sugar, is called a nucleoside, and a base connected 
to a sugar as well as one or more phosphate groups is known as a 
nucleotide. In addition, a polynucleotide is a kind of polymer, which 
contains several nucleotides connected together (e.g., in DNA) [27].

The backbone of the DNA strand comprises alternating residues 
of phosphate and sugar [28]. The sugar in DNA constitutes a pentose 
(five–carbon) sugar (i.e., 2–deoxyribose). Phosphate groups link 
the sugars. Phosphate groups provide the phosphodiester bonds of 
the carbon atoms number 3 and 5 of sugar rings. The asymmetric 
nature of bonds demonstrates that a strand of DNA is directional. The 
nucleotides of one strand and another are oppositely oriented, which 
means that strands are antiparallel. The asymmetric endpoints of 
DNA strands are known as 5′ (five prime) and 3′ (three prime) ends. 
The 5’ and 3’ ends have a terminal phosphate group and a terminal 
hydroxyl group, respectively. Sugar constitutes one of the principal 
differences between DNA and RNA, as RNA has pentose sugar ribose 
in place of DNA’s 2–deoxyribose [26] (Figure 4).

Two forces are mainly responsible for stabilization of DNA double 
helix: the first force is provided by hydrogen bonds of nucleotides and 
the second force is provided by base–stacking interactions between 
aromatic nucleobases [29]. In the aqueous environment of the cell, 
the conjugated π bonds of nucleotide bases are arranged in a line, 
which stands perpendicular to the axis of the DNA molecule. This fact 
causes the interaction with the solvation shell to be minimal and thus 
the Gibbs free energy will be minimized. A full nucleotide mainly 
consists of these bases, which are attached to sugar/phosphate. The 
following figure illustrates the bases for adenosine monophosphate 
(Figure 5).

Other DNA Structures
There are many possible forms of DNA, such as A–DNA, B–DNA, 

and Z–DNA forms. However, B– DNA and Z–DNA are the only ones 
that have been directly found in functional organisms [28]. The form 
DNA takes is determined by the level and direction of super coiling, 
DNA sequence, the hydration level, chemical modifications of the 
bases, the concentration and the kind of metal ions, and whether or 
not polyamines exist in solution [30,31].

The first published papers on A–DNA X–ray diffraction patterns, 
and also B–DNA based their analyses on Patterson transforms. These 
papers presented little data on the structure of directional fibers of 
DNA [31, 32]. Later in 1953, Wilkins et al. suggested another analysis 
for in vivo B–DNA X– ray diffraction/scattering patterns of highly 
hydrated DNA fibers using squares of Bessel functions [32]. James 
D. Watson and Francis Crick published in the same journal their 
paper on molecular modelling analysis of the DNA X–ray diffraction 
patterns, and showed it was the double–helix structure [12].

The “B–DNA form” is the most common form occurring in cells 
conditions [33], yet it is not a family of related DNA conformations 
rather than a well–defined conformation [34], which is found when 
hydration levels are high, which is typical of living cells. Their X–ray 
diffraction and scattering patterns characterize molecular paracrystals 
that have a significant level of disorder [35,36].

The A–DNA form is a right–handed spiral, which is wider than 
B–DNA. It has a wide and shallow minor groove, while its major 
groove is relatively narrower and deeper. The A form is found in 
non– physiological conditions present in partly dehydrated DNA 
samples. However, under the cell conditions, it can be formed in 
hybrid pairings of DNA and RNA strands, and also in enzyme–DNA 
complexes [37,38]. It may be possible that conformation of those parts 
of DNA in which bases have chemically modified by methylation 
change more, and become shaped like Z. The strands create a left– 
handed spiral around helical axis, which is the opposite of more 
frequently found B form [39]. These rate structures are identifiable 
using specific Z–DNA binding proteins, and play a role in regulation 
of transcription [40] (Figure 6).

Figure 4: DNA’s chemical structure. Dotted lines denote hydrogen bonds [2].

Figure 5: A section of DNA. The bases stand between two spiral strands in a 
horizontal direction (Schematic view) [30].
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General Characteristics of FT–IR Spectra of 
Nucleic Acids

Vibrations of nucleic acid are caused by various segments of the 
macromolecule, and the corresponding IR absorptions are found 
in several spectral regions. The major vibrations in the regions of 
spectrum ranges from 1800 cm-1 and 700 cm-1, and four distinct 
different areas are identified: from 1800 cm-1 to 1500 cm-1 absorption 
bands because of the stretching vibrations of double bonds in the 
base planes; from 1500 cm-1 to 1250 cm-1 bands because of the base–
sugar entities, which specifically highly rely on the glycosidic torsion 
angle; from 1250 cm-1 to 1000 cm-1, because of high absorptions of 
the phosphate groups and the sugar; and less than 1000 cm-1 bands 
because of the vibrations of phosphodiester chain paired with sugar 
vibrations.

In the case of exposure of a DNA film to an atmosphere in 
which hydration is controlled by saturated solutions of known salts, 
the share of water will have lower importance, compared with an 
aqueous solution. If we consider the data carefully, we could identify 
an infrared spectrum even in the 1800 cm-1 to 1500 cm-1 range. In 
case of exposure of the film to vaporized D2O, an exchange of H2O 
and D2O results, which can be identified in the IR spectrum? Key 
alterations of the DNA spectrum showing the exchange of labile 
hydrogens of the bases, specifically the NH2 groups of adenines, 
guanines, the NH groups of thymines and cytosines are observed. A 
slow exchange of hydrogens bound to C–8 of the purine base moieties 
is only observable at high temperatures.

Solid–state analysis of DNA with FTIR microscopy is possible 
using micro–crystals. IR spectroscopy– specific microscopes with 
mirrors that wholly reflect CASs grain type optics are currently 
found in the market, which can be used along with FT–IR 
spectrophotometers.

Characterization of Nucleic Acid Secondary 
Structures

In solutions with weak ionic strength, native DNAs and most 
artificial two–stranded DNAs, multiple and oligonucleotides acquire 
a B–type conformation. In identical circumstances, two–strand 

RNAs acquire A–form conformation. In particular the phosphate 
antisymmetric stretching vibration occurs at 1226 cm-1 in the B form 
and at 1245 cm-1 in the A form, and a band which shows the base 
pairing of the nucleic acid is moved from 1716 to 1712 cm-1.

The A–type conformation of DNA is also seen in DNAs as the 
water content varies in the nucleic acid sample. Reducing the relative 
humidity in the environment of DNA film is a simple way to fulfill 
this end. If relative humidity (R.H.) is reduced from 100% R.H. to 
58% R.H., conformation of some DNA sequences will be shifted from 
B to A. The double–helix structure will be disorganized as hydration 
is reduced even more. This shift does not occur in some DNA forms.

The two A– type and B–type conformations of DNA may also be 
described according to band pattern which shows the vibrations of 
the bases along with vibrations of the sugar, which band is placed in 
1250–1400 cm-1 range.

DNA conformations may also be characterized by polarized 
infrared radiation. If the sample has a special orientation axis, for 
example, in stretched fibers or films, the infrared spectra formed 
by incident radiation will be different, whose electric field E has 
perpendicular or parallel polarization with respect to the direction 
of the molecule axis. Computation of directions of transition dipole 
moments in the molecule can be conducted using these dichroic 
spectra, and in simple cases, they provide data about geometric 
parameters [42,43]. It is possible to conduct these computations 
regarding absorption bands of the antisymmetric and symmetric 
movements of the phosphate groups [44]. As mentioned in the 
introduction, it is possible to apply these IR bands, which are sensitive 
to conformation to calculate the two A and B helical geometries if the 
sample contains both of them.

Absorption Band Attributes
Both RNA and DNA have a broad intense band at 3400 cm-1 

(or at 2500 cm-1 if deuterated), which is attributed to the OH (or 
OD) stretching vibration of absorbed water molecules. In the range 
from 1800 to 1500 cm-1, strong bands are located because of the 
C=O stretching, skeletal stretching, and NH bending vibrations of 
the organic base residues [45]. The PO2¯ antisymmetric stretching 
vibration occurs at 1220 cm-1 for B–DNA and ~1240 cm-1 for A–DNA 
[45,46]. A number of intense bands located in the 1100–1000 cm-1 
region are attributed to the PO2¯ symmetric stretching vibration of 
the phosphate group, and the C–O stretching vibrations of the ribose 
or deoxyribose moiety [45–47]. The region ranging from 1000 cm-1 
to 700 cm-1 has a number of medium or weak bands, derived from 
C–O stretching, the P–O stretching, and NH out–of–plane bending 
vibrations and adsorbed water molecule vibrations. The region 
ranging from 600 cm-1 and 400 cm-1covers the D2O molecules and 
ND out–of– plane vibrations.

DNA Analysis
Infrared spectroscopy can be used to analyze ribonucleic acid 

(RNA), deoxyribonucleic acid (DNA), and nucleic acids [48–52]. 
The division of nucleic acids spectra into different states is possible 
according to its components, that is, its base, sugar, and phosphate 
groups. The bases (guanine, uracil, thymine, adenine, and cytosine) 
cause pyrimidinic and purinic vibrations ranging 1800–1500 cm−1, 
with these bands constituting sensitive markers for base stacking and 

Figure 6: From left to right, the structures of A, B, and Z DNA [41].
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base pairing effects. Nucleic acids bands ranging 1500–1250 cm−1 
arise from vibrational pairing of a sugar and a base, and we see sugar– 
phosphate chain vibrations in the region ranging 1250–1000 cm−1. 
Sugar/sugar–phosphate vibrations are seen in ranges from 1000 to 
800 cm−1. Table 1 provides a list of the main infrared states of nucleic 
acids [53] (Table 1).

In case of structural analyses, recording of infrared spectra of 
nucleic acid fibers requires that they are kept in an environment 
whose relative humidity is known, because it is established that 
crystallinity changes as the humidity of the air in the environment 
of the fibers changes. Such conditions are achieved if one chooses 
the directional nucleic acid film located on a plate of BaF2, CaF2, or 
AgCl, and seals it with a second plate and a space above a chamber 
that contains a saturated solution of the needed salt [45]. Spencer [54] 
presented solutions, which provide the correct constant humidities. 
By vapour–phase exchange with a D2O solution of the right salt in 
the chamber of the sealed cell, which was presented above, it will be 
possible to virtually deuterate a nucleic acid film. Placing the nucleic 
acid film in the cell and a D2O salt solution at the bottom of the cell 
causes almost complete replacement of the hydrogen atoms in the 
film by deuterium atoms, except for CH hydrogens.

Sutherland and Tsuboi [45], who analyzed the polarized spectra of 
directional films of sodium DNA at 12 varying humidities, stated that 
there is a correlation between their findings and structure provided 
by Crick and Watson [55] by Feughelman et al. [56]. Bradbury et al. 
provided an example of this kind of analysis of film [57].

Bradbury et al. [57] provided a detailed description of the 
experimental methods applied in film analysis of DNA polymers, 
and presented polarized infrared spectra of directional sheets of DNA 
lithium and sodium salts, in deuterated and undeuterated modes 
in humidities ranging from 0% to 94% R.H. Two types of sodium 
DNA were found by them, one form at humidities above 90% R.H., 

at which bases are perpendicular to the helical axis (B–type), and 
another at humidities from 70 to 80% R.H., at which the bases have 
bent by an angle lower than 13° to the normal to the helical axis (A– 
type). At humidities above 66% R.H., the B–form of Lithium DNA 
is found, and in another, different from the A–form of sodium DNA 
is found at humidities from 44 to 56% R.H. at which humidities the 
bases are bent around 4° from the vertical (C–type). These authors 
addressed direction of the phosphate groups, as a conclusion from 
dichroic effects.

Computational Study
Computational quantum chemistry solves the Schrödinger 

equation for molecular systems. It is a branch of chemistry that 
intercalates with physics and mathematics and is based on principles 
of quantum mechanics. The methods of computational quantum 
chemistry have been coded in a number of quantum chemical 
packages to calculate molecular properties as well as kinetics and 
thermodynamics of chemical reactions. Due to its predictive power 
methods of computational quantum chemistry have become 
complementary to experiment over the last decade and as a result, 
these methods have been widely used for designing new materials and 
drugs.

Equilibrium structures, interaction energies, chemical reactivity, 
distributions of charge, dipoles and higher multipole moments, 
and other spectroscopic quantities such as vibrational frequencies 
are among molecular properties that can be predicted by means of 
computational chemistry methods.

Computational chemistry methods are divided into two groups: 
(1) wave function–based (WF) such as methods of Møller–Plesset 
perturbation theory and coupled cluster theory and (2) electron 
density– based methods such as density functional theory (DFT). The 
wave function–based methods scale exponentially with molecular size 
and therefore their applications to large molecular systems have been 
limited. Although DFT–based methods scale linearly with molecular 
size, they have limitations in treatment of non–covalent interactions, 
especially π–π stacking and van der Waals interactions [58– 61].

The theoretical studies performed so far have focused on 
understanding (1) energetics of specific interactions such as hydrogen 
bonding and π–π stacking in complexes of nucleobases and (2) effect 
of theses specific interactions on vibrational frequencies.

Energetics of Specific Interactions such 
as Hydrogen Bonding and π–π Stacking in 
Complexes of Nucleobases

Non–covalent interactions determine the structure of large 
biomacromolecules such as DNA, RNA, and proteins, thus forming 
the necessary building blocks. These blocks can be neutral or charged, 
with various intermolecular forces being responsible for their 
stabilization. The dominating forces are predominantly electrostatic 
hydrogen (H–) bonding and purely Coulomb (electrostatic) 
interactions [62]. Hydrogen bonding in DNA bases is important in 
providing stability of the DNA double helix and the specificity for 
information transfer. Other fundamental forces include dispersion, 
induction, and charge–transfer. The strength of stacking interactions 
was considered to be much weaker than the H– bonding for a 

Wave number (cm-1) Assignment

2960–2850 CH2 stretching

1705–1690 RNA C=O stretching

1660–1655 DNA C=O stretching, N–H bending RNA C=O 
stretching

1610 C=C imidazole ring stretching

1578 C=N imidazole ring stretching

1244 RNA PO2
– asymmetric stretching

1230 DNA PO2
– asymmetric stretching

1218 RNA C–H ring bending

1160, 1120 RNA ribose C–O stretching

1089 DNA PO2
– symmetric stretching

1084 RNA PO2
– symmetric stretching

1060, 1050 RNA and DNA ribose C–O stretching

1038 RNA ribose C–O stretching

1015
DNA ribose C–O stretching

RNA ribose C–O stretching

996 RNA uracil ring stretching, uracil ring bending

970, 916 DNA ribose–phosphate skeletal motions

Table 1: Skeletal motions of DNA ribose–phosphate [53].
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long time as evidenced in noble gases. Recent calculations showed 
that stabilization energies of stacked DNA base pairs could in fact 
be very large, almost equating that of H–bonding. The stacking 
interactions were originally defined as through–space interactions 
between aromatic systems [63]. Nowadays, the stacking takes on a 
more general definition and is applied to systems with delocalized 
electrons, thus playing a much wider role in biology overall.

It is difficult to determine the role of fundamental energy 
contributions in extended biomacromolecules, as the applications of 
accurate quantum chemical methods have been limited. Therefore, 
a biomacromolecule is usually broken into smaller fragments (e.g. 
DNA nucelobases) that become tractable at a high quantum chemical 
level of theory. Model complexes incorporating hydrogen bonding 
and stacking between these fragments can be easily accessed by 
more accurate quantum chemical methods. The recent progress in 
quantum and computational chemistry have made it possible to 
predict the interaction energies of extended complexes with more 
than 24 atoms (the size of the benzene dimer) at the CCSD(T) 
level in the complete basis set limit [64–67]. The CCSD(T) method 
is highly accurate and is considered the benchmark method for 
studying intermolecular non–covalent interactions [68]. Due to the 
progress in computational power a number of papers on the accurate 
interaction energies of DNA base pairs, H–bonded and stacked DNA 
and RNA base pairs and amino acid pairs have been published since 
2003 [63,69–74]. When selecting a computational methodology for 
studying these complex interactions particular care needs to be taken 
with respect to the quality (size) of the basis set and inclusion of 
electron correlation effects. CCSD(T) is a very expensive method and 
therefore, a more computationally feasible method is needed to study 
systems consisting of > 24 atoms. With respect to its much more 
affordable cost, a second order Møller–Plessett perturbation theory 
(MP2) is considered an alternative method to CCSD(T) for studying 
intermolecular interactions. In studying the performance of cheaper 
methods with the various basis sets the following features need to 
be considered: (1) overall average performance for a particular basis 
and (2) quality of the results obtained for each type of interaction. 
For example, if a method produces excellent results for hydrogen 
bonding and mixed interaction but describes dispersion interactions 
only weakly, it might yield a fairly good overall average interaction 
energy error, but it could not be considered as a good general method 
for treating non–covalent interactions. To be considered reliable, 
a computational method needs to provide a balanced description 
for all types of intermolecular forces. A number of computational 
studies have been conducted in the last decade to determine the right 
combination of the level of theory and the basis set that is most suited 
for accurate description in intermolecular interactions between DNA 
base pairs. Brief highlights of those studies are presented below.

Interaction energies and geometries for more than 100 DNA base 
pairs, amino acid pairs and model complexes were calculated using 
the MP2 level of theory with a number of basis sets and the calculated 
results were compared with the CCSD(T)/CBS level of theory [75]. 
MP2 level of theory was insufficient to treat dispersion interactions 
and therefore, a correction for higher order correlation effects 
through CCSD(T) must be used, whenever significant dispersion 
contribution occurs. For complexes with weaker hydrogen bonds as 
those in amino acid pairs the MP2 level of theory already recovered 

the majority of correlation effects.

Hydrogen–bonded DNA base pairs were studied using the HF 
and MP2 levels of theory. These base pairs contained monomers 
of different polarity and a wide range of secondary long–range 
electrostatic interactions, including those of hydrogen atoms bonded 
to ring carbon atoms. The geometries of the pairs were optimized 
using the HF/6–31G** level of theory within the Cs symmetry. Some 
of the structures adopted non–planar configurations. Stabilization 
energies of the planar base pairs were computed at the MP2/6–31G** 
level of theory. The range of stabilization energies of the studied pairs 
varied between – 24 to – 9 kcal/mol, and the available experimental 
values agreed well with the calculated gas phase interaction enthalpies 
within 2 kcal/mol. Analysis of the MP2 stabilization energies showed 
that the Hartree–Fock energy controlled the stabilization of the base 
pairs. This means that the electrostatic interactions are responsible for 
their stability. The correlation interaction energy for weakly bonded 
base pairs was found to contribute 30–40% to the stabilization, and 
for some base pairs repulsive correlation interaction energy was even 
observed [76].

The structure and stability of nucleic acids were estimated through 
hydrogen–bonded nucleic acid base pairs dominated by electrostatic 
interactions. The RI–MP2 (resolution of identity MP2) method 
in combination with the cc–pVTZ basis set was used for geometry 
optimizations. The MP2 optimizations usually led to the improvement 
of the intermolecular energy terms due to intramolecular geometry 
adjustments such as the N–H bond elongation in base pairs. The 
interaction energies were calculated using the Complete Basis Set 
(CBS) extrapolation within the Dunning’s basis set series. These 
energies ranged from –5 kcal/mol for the weakest non–polar pairs 
to –47 kcal/mol for the strongest protonated ones. Coupled–Cluster 
corrections with inclusion of non–iterative triple contributions 
(CCSD(T)) was used for some base pairs. To guarantee the accuracy 
of 0.5 to 1.0 kcal/mol for these H–bonded base pairs the MP2 
extrapolation to the CBS limit must be based on the aug–cc–pVQZ 
basis set. In addition, the ΔCCSD(T) correction must also be included. 
The PW91 DFT functional with the 6–31G** basis set reproduced the 
RI–MP2/CBS interaction energies with a maximum error of 2.6 kcal/
mol, when applied on the B3LYP optimized geometries. Interaction 
energies calculated with the B3LYP functional deviated from the RI–
MP2/CSB results by with a few kcal/mol, with a relative error of 2.2 
kcal/mol [77]. It is important to remember that the DFT methods (in 
contrast to the MP2 method) are usually not suitable for base stacking 
calculations described above.

Recent studies of the oligonucleotide crystals showed that the 
base pair interactions seemed to be stabilized by non–planar DNA 
base amino groups. Therefore, an exact description of the geometry 
and deformability of the DNA base amino groups is very important. 
The MP2/6–31–G* level of theory was used to compare planar and 
non–planar geometries of adenine, cytosine, guanine, thymine, and 
isocytosine. The range of dihedral angles between the cytosine and 
adenine rings and their amino group hydrogen atoms was found to 
lie between 10 to 25°, and the angles between the two guanine amino 
group hydrogen atoms and the guanine ring were 43 and 12°. The 
non–planar structures of cytosine and adenine were only 0.4 kcal/
mol more stable than the planar ones, whereas the non–planar 
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guanine was 1.6 kcal/mol more stable than the planar molecule [78]. 
In summary, the amino group non–planarity was more pronounced 
for guanine than for adenine and cytosine, with the larger basis sets 
favouring planar structures. For example, preliminary calculations 
of formamide [79] and formamidine [80] illustrated a decrease 
in the amino group non–planarity on going to extended basis sets 
(6– 311G(3df,2p) and 5s4p3df/3s2p). In the case of formamidine 
the energy difference between planar and non–planar structures 
decreased from 0.85 to 0.3 kcal/mol (in comparison with MP2/6–
31G*), while the amino group hydrogen atom dihedrals were reduced 
by less than 15%. The higher theoretical level used for formamide 
[79,80] yielded a planar structure and non–planarity of this system 
was extremely small with any basis set [79, 80]. As a result, larger basis 
sets are required for geometry optimisations.

The most recent study by P. Hobza et al. [81] showed that the best 
and most well balanced description of non–covalent interactions in 
DNA base pairs was produced with the MP2/cc–pVTZ method. For 
cyclic hydrogen bonds such as those found in nucleic acid base pairs 
the MP2 method paired with any basis set did not yield reliable results 
except a very large basis set, aug–cc–pVTZ. It has to be stressed that 
cyclic hydrogen bonds are not particularly common within proteins 
or most protein–ligand complexes, and so this deficiency of the MP2 
method is not important for studies of DNA base pairs. It was noted 
that normally MP2 interaction energies were quite poorly described 
when the counterpoise correction method was not employed. The 
lowest average unsigned interaction energy errors with values of 0.67 
and 0.70 kcal/mol were obtained in combination with the aug–cc–
pVTZ and cc–pVTZ basis sets, respectively. Excellent accuracy was 
achieved for hydrogen bonding and mixed interactions with the 
aug–cc–pVTZ basis set, whereas the cc–pVTZ basis set produced 
better results for each of the interaction types and described 
mixed interactions particularly well. Among smaller basis sets, 6– 
31G*(0.25) and TZVP produced the best results. Both of these basis 
sets yielded an average error of 1.32 kcal/mol with large errors for 
hydrogen bonding interactions and relatively low ones for dispersion 
interactions. In cases where the size of large system does not allow to 
use large basis sets with the MP2 method and only qualitative results 
are required, the 6–31G* basis was recommended as the best choice 
to study non–covalent interaction energies.

A combination of quantum chemical calculations and molecular 
dynamics simulations was used to study the role of a solvent on 
tautomerism of nucleic acid bases and structure and properties 
of nucleic acid base pairs [82]. Particular attention was paid to 
micro–hydrated (by one or two water molecules) complexes, whose 
structures found by scanning empirical potential surfaces were 
re–calculated at a correlated ab initio level of theory. Additionally, 
isolated as well as mono– and di–hydrated H–bonded, T–shaped 
and stacked structures of all possible nucleic acid base pairs were 
studied at the same level of theory. Water as solvent was shown to 
have a strong influence on the equilibrium between the tautomers 
of bases as well as the spatial arrangement of the bases in a base pair. 
The results provided clear evidence that the prevalence of either 
the stacked or hydrogen–bonded structures of the base pairs in the 
solvent was not determined only by their bulk properties but rather 
by specific hydrophilic interactions of the base pair with a small 
number of solvent molecules [82]. For example, the canonical form of 

cytosine became favored in the presence of just two water molecules 
accompanied by the most favorable free energy of hydration. For 
guanine unusual tautomers with very large dipole moments, albeit 
extremely disfavored energetically in the gas phase (by about 20 kcal 
mol-1), were significantly stabilized by water. The hydration of adenine 
also reduced the difference between the stability of the canonical form 
(global minimum) and the first two local minima, which resulted in 
the co–existence of these three forms. The canonical forms of thymine 
and uracil were undoubtedly favored both in the gas phase and in the 
water environment. These trends were also confirmed by calculations 
of the hydration free energies. The following conclusions were drawn 
in the study: 

(1) Only marginal differences were found between the calculated 
hydration energies of tautomers of bases using any of the following 
models: conductor–like polarizable continuum model (C–PCM), 
molecular dynamics thermal integration (MD–TI) method and 
hybrid methods. 

(2) The largest discrepancy between the hydration energies was 
found for tautomers with high dipole moments, whose results should 
therefore be interpreted with care. The higher the hydration number 
of the base pairs, the lower the difference between the stability of 
hydrogen bonded (HB) complexes and single (S) molecule structures. 
This means that S structures hydrated better than the HB ones 
as a result of a denser network of H–bonds than in the case of HB 
structures. The presence of two water molecules brought additional 6 
kcal mol-1 to the stability of S structures in comparison with the HB 
base pair, regardless of their chemical structure. 

(3) Methylation of bases led to an even stronger preference for 
stacked structures, which are favored over the H–bonded ones even 
in the absence of water molecules in the majority of cases. Preference 
for stacked structures in the DNA base pairs in the water solution 
might arise from the hydrophilic interaction of a small number of 
water molecules and not only, as expected, from the hydrophobic 
effect of bulk water [82]. 

Effect of Specific Interactions on Vibrational 
Frequencies

The preference of normal tautomeric forms of nucleobases in 
aqueous solution was demonstrated by Raman measurements [83]. 
This result was consistent with the pKA values of adenine and its 
tautomer, adenine* that differ by a factor of 105 [84]. The important 
role of tautomers of nucleobases in mutagenesis has been studied 
with experimental and theoretical methods [85]. Quantum chemical 
calculations of vibrational frequencies of both forms can guide 
identification of rare tautomers in solution or in gas phase [86]. In 
the case of the adenine–thymine (AT) complex and the complex 
between corresponding imino–enol tautomers, adenine*–thymine* 
(A*T*), geometry optimizations at the SCF/MINI–1 level of theory 
indicated that the former complex was more stable by about 10 kcal/
mol than the latter. Single–point HF calculations with a larger basis 
set, MIDI–1, on the optimized geometries optimized resulted in 
unrealistic interaction energies. Therefore, single–point calculations 
of this kind should be taken with great care for the AT and A*T* 
complexes. Out of the two semi– empirical methods, AM1 and PM3, 
the PM3 results for the geometries, harmonic force fields, heats of 
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formation, interaction energies and the energy difference between 
the AT and A*T* complexes were in better agreement with the SCF/
MINI–1 results. The SCF/MINI–1 interaction enthalpy of –11.32 
kcal/mol for the AT complex matched well the experimental value of 
–12.9 kcal/mol. The deformation energy and basis set superposition 
error were found to be of importance in these complexes. Knowledge 
of the harmonic vibrational spectra of isolated A, T, A*, and T* bases 
and the AT and A*T* base pairs made it possible to determine the 
frequency and intensity changes induced by the Watson–Crick type 
of hydrogen bonding in the AT base pair and tautomeric transitions 
between the AT and A*T* complexes [86]. In the AT base pair, the 
vibrational spectra of A and T were still separate, thus making the 
frequency shifts and intensity changes due to base pairing predictable 
in experimental vibrational spectra. This was not found to be true for 
the A*T* complex due to significant coupling of the normal vibrations 
between A* and T*, which resulted in strong in–plane ring vibrational 
modes of isolated bases and N–H bending modes of adenine upon 
formation of hydrogen bonds. The appearance of new intensive bands 
related to the stretching modes of the N3=C4 and C6=N10 double 
bonds of T* and A*, respectively, in the spectral regions was suggested 
as a clear marker for the spectroscopic detection of the existence of 
these rare tautomers in solutions (Figure 7).

Polarization–dependent two–dimensional infrared (2D IR) 
spectra of the purine and pyrimadine base vibrations of five 

nucleotide monophosphates (NMPs) were obtained in D2O at neutral 
pH in the frequency range 1500–1700 cm-1. In contrast with the 
traditional peak assignment, the distinctive cross-peaks between the 
ring deformations and carbonyl stretches of NMPs indicated that 
these vibrational modes were highly coupled. The traditional peak 
assignment is based on a simple local mode picture such as C=O, 
C=N, and C=C double bond stretches. Except in the case of guanine 
and cytosine that have a single local CO stretching mode, no simple 
or intuitive structural correlations were found to readily assign the 
spectral features. Density functional theory (DFT) calculations 
with explicit waters solvating hydrogen–bonding sites showed that 
multiple ring vibrations were indeed coupled and delocalized over the 
purine and pyrimidine rings. Generally, there was a good agreement 
between the experimental and computational results, thus forming 
building blocks for constructing a structure– based model of DNA 
and RNA vibrational spectroscopy [87].

The results of harmonic and an harmonic frequency calculations 
on a guanine–cytosine complex with an enolic structure (a tautomeric 
form with cytosine in the enol form and with a hydrogen at the 7– 
position on guanine) were compared with gas–phase IR–UV double 
resonance spectral data. Harmonic frequencies were obtained at 
the RI–MP2/cc–pVDZ, RI–MP2/TZVPP, and semi–empirical PM3 
levels of electronic structure theory. An–harmonic frequencies were 
obtained by the correlation–consistent vibrational self–consistent 
field (CC–VSCF) method with improved PM3 potential surfaces. The 
average absolute percentage deviations were 2.6% for harmonic RI–
MP2/cc–pVDZ (3.0% with a scaling factor of 0.956 to compensate 
for anharmonicity), 2.5% for harmonic RI–MP2/TZVPP (2.9% with 
a scaling factor of 0.956 to account for anharmonicity), and 2.3% for 
adapted PM3 CC–VSCF. Inclusion of the empirical scaling factor in 
the ab initio harmonic calculations usually improves the stretching 
frequencies but decreases the accuracy of the other mode frequencies. 
The anharmonic calculations indicated that anharmonicity along 
single mode coordinates could be significant for simple stretching 
modes. For several cases, coupling between different vibrational 
modes provided the main contribution to anharmonicity. Examples 
of strongly an–harmonically coupled modes included the symmetric 
stretch and group torsion of the hydrogen–bonded NH2 group on 
guanine, the OH stretch and torsion of the enol group on cytosine, 
and the NH stretch and the NH out–of–plane bend of non– hydrogen 
bonded NH group on guanine [88]. The CC–VSCF method with 
adapted PM3 potential surfaces was found to be useful in obtaining 
accurate frequency information for biological molecules. Further 
improvements in the PM3 method, such as in describing hydrogen 
bonds [89,90], might further improve the accuracy. Most importantly, 
the power of gas–phase spectroscopy provided accurate information 
on increasingly complex biological molecules. Additional biological 
systems can therefore be explored by the combination of high–
resolution spectroscopy and harmonic and anharmonic vibrational 
calculations with high–quality potentials. This should lead to more 
understanding about the properties of the potential surfaces of 
biological molecules [88].

Intermolecular vibrational modes of the H–bonded adenine...
thymine Watson–Crick (ATWC) base pair were studied using 
multidimensional non–harmonic treatment. Relying on a Born–
Oppenheimer–like separation of the fast and slow vibrational motions, 

Figure 7: SCF/MINI–1 optimized structures and dipole moments d+ of 
isolated (a) adenine*–thymine* and (b) adenine–thymine complexes [86].
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the complete multi–dimensional vibrational problem was reduced 
to a six–dimensional sub–problem, in which all rearrangements 
between the pair fragments (i.e. adenine and thymine) could be 
described. The potential energy surface is determined at the Hartree–
Fock level with minimal basis set (HF/MINI–1) and an analytical 
potential energy function was obtained by fitting to the ab initio 
data. This function was used to calculate vibrational energy levels and 
effective geometries within the framework of the Hamiltonian model, 
disregarding the role of the kinematic and potential (in–plane)–(out–
of–plane) interactions. The results were in reasonable agreement with 
the normal coordinate analysis (harmonic treatment); thus indicating 
physical precision of this standard approach for an approximate 
description of the lowest vibrational states of the AT base pair. In 
addition, harmonic vibrational frequencies of the AT pair and 28 
other base pairs were evaluated at the HF/MINI–1 and HF/6–31G** 
levels of theory. Both methods produced deviation in intermolecular 
harmonic vibrational frequencies by less than 30%. For all the base 
pairs, the buckle and propeller vibrational modes [for definition and 
nomenclature see R. E. Dickerson et al., EMBO J. 8, 1 (1989)] were the 
lowest ones, all being in the narrow interval (from 4 to 30 cm-1 in the 
harmonic approximation). Although most of the evaluated harmonic 
frequencies were qualitative, in some cases due to a strong non–
harmonic behavior of the buckle motion, the calculated vibrations 
became physically meaningless. For all the base pairs the buckle and 
propeller vibrations were the lowest vibrational modes. While the 
buckle motion was shown to be harmonic for some pairs (adenine– 
thyamine and guanine–cytosine) it was found to be strongly 
anharmonic for the other ones such as guanine–guanine complex. 
Other approaches need to be used for quantitative description of 
these anharmonic modes [91,92].

The subtle conformational changes that occur upon tautomeric 
equilibria are usually difficult to understand, which renders the 
spectral assignment a complex task. To understand the structural 
and spectroscopic properties of this kind of systems a full vibrational 
spectroscopic study of the 7H–keto– amino tautomeric form 
of guanine was performed, (both for the isolated molecule and 
the condensed phase). By the combination of all the available 
spectroscopic vibrational techniques (FTIR, Raman, and inelastic 
neutron spectroscopy (INS)) with state–of–the–art theoretical 
approaches such as DFT, a complete and exact assignment of the 
experimental spectra was achieved. For studying of nucleic acid 
bases, condensed–phase periodic DFT calculations were used in 
this study [93]. Between predicted and experimental spectra, a very 
good agreement was achieved for the Raman and INS data (both 
regarding frequencies and intensities). Particularly regarding the INS 
profile, detailed features such as Davydov splittings and vibrational 
modes related to intermolecular H–bond interactions could be 
unequivocally assigned for the first time. The study also highlighted 
that periodic functionals with the Plane–Wave basis sets was needed 
to predict vibrational frequencies of the molecule in the solid state. In 
particular, the low energy region of the spectrum, including external 
(lattice) modes, could only be accurately predicted through such a 
plane–wave methodology [93].

Podolyan et al. [94] reports gas–phase B3LYP, HF, and MP2 
calculations of the vibrational infrared spectra of the two DNA 
base pairs such as adenine–thymine and guanine–cytosine. A few 

basis sets, including 6–31G(d), 6–31++G(d,p), aug–cc–pVDZ, and 
cc–pVTZ, were used at the HF and B3LYP levels of theory to assess 
vibrational modes and their IR intensities. Although it was not 
possible to compare calculated frequencies to experimental data (due 
to the lack of thereof in gas phase), the comparative performance of 
these methods showed that all these levels of theory produced similar 
results. Therefore, an appropriate DFT functional with a medium–
sized basis set is adequate for theoretical evaluation of the IR 
spectra of studies complexes. Therefore, the use of a more expensive 
electron–correlated method such as MP2 was not justified. At the 
same time, out of these methods only the MP2 method identified the 
non–planarity of the some DNA base pairs [94–124].

In summary, it appears that electron correlated methods such as 
MP2 and CCSD(T) are important in providing a balanced description 
of intermolecular interactions in DNA base pairs. The DFT field has 
recently exploded with a number of new DFT functionals that are 
supposed to better treat medium– and long–range correlation effects. 
Inclusion of an explicit correction to treat dispersion interactions has 
been shown to significantly improve their performance. Therefore, 
a more comprehensive study on the performance of wave function– 
and DFT–based methods is needed to select the best combination of a 
quantum chemical method and basis set for studying intermolecular 
interactions and IR frequencies/intensities of oligonucleotides 
in gas phase and in solution, thus paving the way towards a more 
comprehensive description of structure and properties of DNA. It 
appears that the solvent effects on conformational changes (especially 
those related to non–planarity) cannot be neglected and solvent 
molecules need to be explicitly included in calculations to help 
elucidate factors that are responsible for the unique hydration effect 
in DNA [125–180].

Future Studies
(1) We are particularly interested in explaining why the 

asymmetric phosphodiester mode of nucleic acids shifts from 1225 
cm-1 in the B–DNA conformation to 1240 cm-1 in the A–DNA form 
for double stranded DNA and single stranded DNA but not RNA. 
We are also interested in understanding why the intensity of the 
symmetric stretch at 1080 cm-1 in B–DNA is much greater than that 
in A–DNA. 

(2) Predict vibrational frequencies and IR intensities of 
single nucleotides and oligonucleotides by means of methods of 
computational quantum chemistry, including those of density 
functional theory and correlated levels of theory such as MP2 and 
CCSD(T). The following factors that affect the accurate prediction 
of vibrational frequencies will be systematically studied: (a) 
conformation of the nucleotide/oligonucleotide and the effect of 
intramolecular hydrogen bonding and pi–pi stacking, (b) effect of basis 
set, and (c) solvent effects: implicit through a polarisable continuum 
model or explicit on vibrational frequencies and intensities, etc. This 
goal will be achieved by comparing the experimental FTIR spectra 
with the calculated frequencies and intensities. As a result, a new 
computational methodology for accurate prediction of vibrational 
frequencies of oligonucleotides will be established. 

(3) Explain why the asymmetric phosphodiester mode of 
nucleic acids shifts from 1225 cm-1 in the B– DNA conformation to 
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1240 cm-1 in the A–DNA form in response to dehydration for double 
and single standard DNA. We are also interested in why the intensity 
of the symmetric stretch at 1080 cm-1 in B– DNA is much greater than 
the intensity of this mode in A–DNA.
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