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Introduction 
The Morita–Baylis–Hillman (MBH) reaction was an 

organocatalyzed chemical transformation that provided effective 
and atom economical carbon–carbon bond-forming reactions [1-5]. 
Formally, this reaction promoted condensation between α-position 
of an electron-deficient alkene and the sp2 carbon atom of an 
aldehyde catalyzed by nucleophilic bases such as DABCO [5]. With 
highly functionalized MBH adducts and their derivatives, structurally 
complex and diverse molecules (such as acaterin, asmarines A and B, 
borrelidin, PPAPs and so many natural products [4,6]) could be easily 
achieved. Hence, the development of the MBH reaction has attracted 
considerable interest in recent years. However, several disadvantages 
such as poor conversions, low reaction rates, low enantioselectivity 
and the lack of definite mechanism also limited the applicability of 
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the MBH reactions [2,4,6,7]. Therefore, it is important to investigate 
new catalytic system to solve known problems.

Results and Discussion
For the asymmetric MBH reaction, thiourea derivatives were 

widely used {7-12]. Besides, cyclohexanediamine and proline were 
both important chiral frameworks. Therefore, we combined these two 
structural units and synthesized a new catalyst C (Figure 1, Table 1).

In comparison to DABCO, there was no product when the 
reaction was carried out with DMAP as base. Meanwhile, the yield 
with DBU as base was much lower though DBU played an important 
role in the MBH reaction [13].

For further optimization, the effect of the solvents on the reaction 
was also investigated (Table 2).

Obviously, for this reaction, the presence of solvent exerted a 
tremendous influence. 

Therefore, in order to get superior yields, DABCO should be used 
as the base while DCM should be chosen as the solvent.

According to the best condition we got above, many other 
reactions had been tested. Besides, optical  rotation also had tested, 
and from Table 3, we could see that the selectivity of the catalyst was 
not satisfying. Thus further work should be done to improve the 

Figure 1: Synthesis of catalyst.

entry Base yield 

1 DMAP / 

2 DBU 33.7% 

3 DABCO 85.3% 

Table 1: Optimization of the Base in the Reaction of 2-Cyclohexen-1-one with benzaldehyde.

javascript:;
javascript:;


Austin J Anal Pharm Chem 5(3): id1107 (2018)  - Page - 02

Dai Zhenya Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

enantioselectivity of the reaction.

Experimental
Materials and measurements

All reagents and solvents were chemically pure (CP) grade or 
analytical reagent (AR) and were used as received unless otherwise 
indicated general. 1H NMR and 13C NMR spectra were measured on a 
Bruker AV 500 spectrometer at 303k from sample solution in CDCl3. 
Mass spectra were measured on a Waters Q-TOF micro spectrometer.

Synthesis of C [14-16]
In a flask, A (0.1508g) and B (0.076g) was dissolved in DCM 

(10mL) and CH3OH (1ml). The mixture was refluxed overnight. 
After concentrated, the residue was subjected to flash column 
chromatography (silica gel thin layer chromatography; mineral ether: 
ethyl acetate 2:1) to give dark yellow powder. Yield: 0.1463g (25.67%). 

1H NMR (300 MHz, CDCl3) δ 7.77 (s, 2H), 7.65 (s, 2H), 4.04 (s, 

entry solvent yield 

1 / 69.1% 

2 DCM 85.3% 

 
Table 2: Solvent Effects on the MBH Reaction of 2-Cyclohexen-1-one with benzaldehyde.

 
entry product yield optical rotation 

1 

 
J1 

85.3% -1.3° 

2 

 
J2 

82.3% -1.5° 

3 
 

J3 

83.2% +0.3° 

Table 3: MBH Reaction of Enones and Acrylates with Aldehydes Catalyzed by C.

1H), 3.40 (s, 1H), 3.26 (s, 1H), 2.60 (dd, 2H), 1.99 (d, 3H), 1.93 (s, 2H), 
1.84 (s, 2H), 1.79 (s, 2H), 1.49 (dd, 2H), 1.39 – 1.12 (m, 4H).

13C NMR (75 MHz, CDCl3) δ 182.07 (s), 136.18 (s), 134.71 (s), 
126.19 (s), 79.62 (s), 65.75 (s), 58.70 (s), 58.34 (s), 57.72 (d, J = 15.3 
Hz), 54.28 (s), 35.89 (s), 31.89 (s), 30.96 (s), 28.38 (s), 27.12 (s), 26.68 
(s).

General procedure for the synthesis of J1-3 [12]
The reaction was carried out with 1 equiv of aldehyde and 4 equiv 

of enone or acrylate in the presence of 20mol% catalyst and base at 
10oC for 72h. After concentrated, the residue was subjected to flash 
column chromatography to get product.
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