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a causal agent in the development of atherosclerosis. Against this 
background, it became logical to search for a possible link between 
tissue-deposited eLDL (see above), CRP, and complement activation. 
As a first step, we demonstrated the presence of CRP both in the early 
human atherosclerotic and aortic valve lesion and its colocalization 
with eLDL and also the terminal complement complex (C5b-9) by 
immunohistochemistry [8-10]. The demonstration of C5b-9 in 
the early human atherosclerotic lesions and its colocalization with 
smooth muscle cells [11] provided further evidence for a possible 
role of complement activation in the early stages of atherogenesis. 
Furthermore, we were able to demonstrate that CRP is chemotactic 
for human monocytes and may therefore play a major role in the 
recruitment of monocytes during atherogenesis [12]. Notably, further 
work indicated that eLDL binds to CRP and activates complement in 
atherosclerotic lesions via a CRP-dependent and CRP-independent 
pathway [9]. We extended this observation and demonstrated that 
the CRP-dependent pathway halts before the proinflammatory 
terminal sequence, while the CRP-independent pathway proceeds 
to completion with the generation of C5b-9 complexes [13]. Thus, 
binding of CRP to eLDL is the first trigger for complement activation 
in the atherosclerotic lesion, but the terminal sequence is thereby 
spared. This putatively protective function of CRP is overrun at higher 
eLDL concentrations, so that potentially harmful C5b-9 complexes 
are generated [13]. If the amount of insudated LDL exceeds the 
recycling capacity of the normal intima, or, in other words, the 
capacity of the system is overburdened, this will lead to an imbalance 
between lipoprotein and cholesterol deposition and removal with 
subsequent accumulation of extracellular LDL particles. If these 
are oxidized in the course of their prolonged residence time in the 
intima, among a wealth of well documented events CRP also binds 
to OxLDL through recognition of phopshorylcholine of oxidized 
phospholipids [14]. During these advanced stages of atherosclerosis, 
we demonstrated that uptake of labeled oxidation-specific antibodies 
is focally diminished in plaques displaying accepted features of plaque 
stability. Imaging techniques to detect the presence and depletion of 
OxLDL may therefore be useful in assessing plaque stabilization [15]. 
Conclusively, given the above mentioned examples for the role of 
both lipoprotein modification in early and advanced atherosclerosis, 
we propose that eLDL might be more important for initiation of 
atherosclerosis while OxLDL might be more helpful for diagnosis 
and prognosis of the disease. In this context, oxidative modifications 
in the vessel wall are considered to occur primarily as a process 
secondary to inflammation [5].

ad iii) Oxidative stress is defined as an imbalance between the 
production and degradation of reactive oxygen species (ROS). 
Enzymatic inactivation of ROS is achieved mainly by superoxide 
dismutases, catalase and the glutathione peroxidases. Glutathione 
and the glutathione peroxidases constitute the principal antioxidant 
defense system in mammalian cells. Glutathione peroxidase 1 
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the pathogenesis of atherosclerosis with three main topics: i) role 
of modified lipoproteins for the initiation and progression of 
atherosclerosis (propagating an alternative hypothesis comprising 
both enzymatic degradation and oxidation of Low Density Lipoprotein 
(LDL)) ii) impact of C-reactive protein on atherosclerosis (promoted 
by CRP as cardiovascular risk marker, which is still a matter of lively 
debate) and iii) role of antioxidative enzymes in atherosclerosis.

ad i) Concerning the above mentioned hypothesis for the 
different impact of enzymatically degraded LDL (eLDL) and oxidized 
LDL (OxLDL) on atherosclerotic lesion initiation and progression, 
our working group proposes the following model integrating 
both lipoprotein modifications. Since LDL sporadically becomes 
entrapped in the arterial intima, a mechanism should exist to 
remove the stranded lipoprotein. We hypothesize that under normal 
circumstances, the lipoprotein is indeed enzymatically degraded in 
the first place by several proteases and cholesterylesterase [1] and 
epitopes are exposed to enable the lipoprotein to be recognized 
and taken up by macrophages. Indeed, in contrast to OxLDL, 
specific monoclonal antibodies allowed demonstration of extensive 
extracellular deposits of enzymatically modified LDL (eLDL) in the 
early atherosclerotic lesion [2], a prerequisite for sufficient cellular 
uptake of and foam cell formation by modified LDL. eLDL is 
recognized by multiple macrophage receptors and is the most potent 
naturally occurring foam cell inducer known to date [3]. This will lead 
to a sequence of events that serve to clear the vessel wall of cholesterol 
and is concluded by the transfer of excess cholesterol from foam cells 
onto HDL for reverse cholesterol transport [4-6].

ad ii) More than 30 epidemiological studies have demonstrated 
a significant association between elevated serum or plasma 
concentrations of CRP and the prevalence of atherosclerotic vascular 
disease, the risk of recurrent cardiovascular events among those 
with established disease, or the incidence of first cardiovascular 
events among those at risk. This strong base of epidemiological 
evidence has led to the hypothesis that CRP is both a marker of and 
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(GPx-1), the ubiquitous intracellular form and key antioxidant 
enzyme within many cells, including the endothelium, consumes 
reduced glutathione to convert hydrogen peroxide to water and lipid 
peroxides to their respective alcohols. It also acts as a peroxynitrite 
reductase. Due to its major role in the prevention of oxidative 
stress, GPx-1 may be an important antiatherogenic enzyme. In fact, 
we have shown in patients with coronary artery disease that a low 
activity of red blood cell GPx-1 is associated with an increased risk 
of cardiovascular events independently of traditional risk factors for 
atherosclerosis [16]. Furthermore, we were able to substantiate this 
observation by demonstrating that deficiency of GPx-1 accelerates 
and modifies atherosclerotic lesion progression [17,18]. The results 
from this study and a recent study on calcific aortic valve stenosis 
[19] show that modification of antioxidant defense systems may 
indeed add important clues to our understanding of oxidative stress 
in atherogenesis and may eventually redirect clinical interest towards 
the development of effective preventive interventions in patients at 
risk of cardiovascular disease.
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