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Abstract

Background: Methylenetetrahydrofolate reductase (MTHFR) is a key 
enzyme involved in folate/homocysteine metabolism. A polymorphism A1298C 
has been reported to be linked with risk of several diseases/disorders like 
birth defects, metabolic and psychiatric disorders and different cancers. The 
association between autism and MTHFR gene A1298C polymorphism has 
been investigated in several case-control studies, which rendered contradictory 
results. 

Aim: To shed light on association between MTHFR A1298C polymorphism 
and risk of autism, a meta-analysis of published case control association studies 
was conducted. 

Methods: Four electronic databases: PubMed, Google Scholars, Elsevier 
and Springer Link were searched up to August, 2016. All statistical analyses 
were performed using MetaAnalyst and Mix (version 1.7). Odds ratios (ORs) 
with their 95% confidence intervals (95% CIs) were calculated. Total seven 
studies with 1,424 cases and 1,513 controls were included in the present meta-
analysis. 

Results: The results of meta-analysis suggested that there were no 
significant association between A1298C polymorphism and autism risk using 
overall comparisons in five genetic models (A vs C: OR=0.99, 95%CI=0.80-
1.23, p=0.005; AC vs AA: OR = 1.04, 95% CI = 0.75-1.43, p = 0.82; CC vs AA: 
OR = 0.16, 95% CI = 0.06-0.45, p = 0.006; CC+AC vs AA: OR = 0.45, 95% 
CI = 0.25-0.80, p = 0.006; CC vs AC+AA: OR = 0.15, 95% CI = 0.06-0.37, 
p<0.0001)). Publication bias was absent. 

Conclusion: In conclusion, results of present meta-analysis showed no 
significant association between MTHFR A1298C polymorphism and autism risk. 
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There are several evidences that in autistic children, DNA methylation 
and DNA repair are altered [16,17] as well as dysregulation of redox 
homeostasis [18], which reinforces a critical role for CI metabolism 
in the etiology of ASDs [15]. One carbon metabolic pathway 
include several genes and most of them are polymorphic especially 
methylenetetrahydrofolate reductase (MTHFR) and methionine 
synthase reductase (MTRR) and frequency of mutant alleles varies 
greatly worldwide [19-25].

Folate facilitates methionine synthesis from homocysteine 
by acting as a cofactor for methylene tetrahydrofolate reductase 
(MTHFR) which converts 5,10-methylenetetrahydrofolate (CH2THF) 
to 5-methyltetrahydrofolate (CH3THF). 5-methyltetrahydrofolate 
donates methyl group for the conversion of homocysteine in to 
methionine, which further converted in to S-adenosyl-methionine 
(SAM). SAM is universal methyl group donor, which transfer methyl 
to DNA, RNA, proteins, phospholipids, or neurotransmitters [26]. 
Consistently global DNA hypomethylation observed in autistic 
children [27-29]. Methyl deficiency may strongly impact epigenetic 
remodeling during key periods of development. 

MTHFR gene is 20 kb long (20,336 bp) and mapped at 1p36.3 

Introduction
Autism is a complex neurodevelopment disorder involving 

multiple organ systems, primarily immunological, gastrointestinal 
and neurological ones [1] and appears in the early years of life [2-
4]. It is currently estimated that 3-6 children out of 1000 worldwide 
have autism spectrum disorder (ASD) [5]. The incidence of autism 
has increased rapidly in recent decades [6,7]. It is a heterogeneous 
neurological disorder characterized by three core behavior 
abnormalities-namely, deficits in social interaction, reduced verbal 
and nonverbal communication, and highly focused stereotyped 
behaviors that emerge after a period of relatively normal development 
[8]. A number of factors such as genetic, epigenetic, environmental 
and autoimmune function have been implicated in the etiology of 
autism [6,9-14]. 

One carbon (C1) metabolism is a likely pathway to regulate 
epigenetic processes in autism [15]. CI metabolism is comprised of 
three interconnected pathways-folate cycle, methionine cycle and 
transsulfuration cycle. The folate and methionine pathway mediates 
de novo nucelotide synthesis for DNA repair and replication and DNA 
methylations. The transsulfuration pathway balance cellular redox. 
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(OMIM 607093), having 11 exons. Several single nucleotide 
polymorphisms (SNPs) have been identified in MTHFR gene. Among 
which the most commonly studied polymorphisms are C677T in 
exon 4 and A1298C in exon 7 [30,31]. These two polymorphisms 
were shown to be associated with reduced enzyme activity and 
their frequency varies greatly in different geographical regions. The 
A1298C polymorphism codes for an alanine to glutamine substitution 
in the C-terminal regulatory domain [32]. Individuals homozygous 
for the A1298C have approximately the same enzyme activity as 
those heterozygous for C677T allele [32,33]. The prevalence of the 
A1298C homozygote variant genotype ranges from 7 to 12% in White 
populations from North America and Europe. Lower frequencies 
have been reported in Hispanics (4 to 5%), Chinese (1 to 4%) and 
Asian populations (1 to 4%) [34,35]. There are conflicting results 
about the role of MTHFR polymorphism A1298C as risk for autism. 
To derive a precise estimation of relationship between MTHFR 
A1298C polymorphism and autism risk, we conducted present meta-
analysis. 

Methods 
Search strategy, identification of studies and data  

extraction
A literature search of the PubMed, Google Scholar, Science Direct, 

and Springer Link databases was conducted using combinations of 
the following terms: ‘‘polymorphism or variant or mutation’’ and ‘‘ 
Autism ’’ and ‘‘Methylenetetrahydrofolate reductase or MTHFR’’ and 
“A1298C”. Studies that were included in the present meta-analysis 
had to meet the following criteria: 1) study should evaluated MTHFR 
gene A1298C polymorphism in autism cases, 2) study should be a 
case-control, and 3) study should reported sufficient genotype/allele 
numbers for estimation of odds ratio (OR) with a 95% Confidence 
Interval (CI). 

The following information was extracted from each included 
study: first author’s family name, journal name, year of publication, 
country name, number of cases and controls. Number of alleles or 
genotypes in both cases and controls were extracted or calculated 
from published data to recalculate ORs. 

Meta-analysis
Crude odds ratio with 95% CI were used to assess strength of 

association between MTHFR A1298C genotypes and risk of autism 
in log additive/ allele contrast (C vs A), homozygote (CC vs AA), co-
dominant/heterozygote (AC vs AA), dominant (CC+AC vs AA) and 
recessive (CC vs AC+AA) models. The statistical significance of the 

pooled OR was determined using a Z test and p <0.05 was considered 
statistically significant.

The heterogeneity of these studies was tested by the Q statistic 
and was considered statistically significant when p<0.05 [36]. The 
pooled OR was estimated using the fixed effects model when there 
was less heterogeneity [37], or random effects model when there 
was higher heterogeneity [38]. All included studies were tested for 
genotypic distribution of the MTHFR A1298C polymorphism in the 
control group with the HWE principle using the x2-test.

Funnel plots were used to detect publication bias. However, due 
to the limitations of funnel plotting, which require a range of studies 
of varying sizes involving subjective judgments, publication bias was 
evaluated using Egger’s linear regression test [40]. All p-values are 
two tailed with a significance level at 0.05. All statistical analyses were 
undertaken by MetaAnalyst [41] and MIX version 1.7 [42].

Results
Characteristics of included studies

Seven relevant studies describing the association between MTHFR 
A1298C and autism were identified [41-47] (Table 1). However, in 
the study of Mohammad et al. [43], the distributions of genotypes 
in the control groups were not in HWE (p <0.05), indicating 
genotyping errors and/or population stratification. Except one study 
[45], six studies were on Caucasians. All the included studies were 
case-controlled, comprising 1,424 cases and 1,513 controls. In case 
groups, the frequencies of AA-homozygote, AC hetrozygote and CC 
homozygote were 51.39%, 38.88% and 9.729% respectively. In control 
groups, the frequencies of AA homozygote, AC-heterozygote, and 
CC-homozygote were 52.46, 37.02 and 10.51%, respectively. The 
C allele frequencies in the case and control groups were 29.55 and 
29.11%, respectively (Figure 1).

Meta-analysis
The results of present meta-analysis exhibited high heterogeneity 

in several genetic models when all eligible studies were pooled together 
(Table 2). Thus, random effect model was applied to calculate the OR. 

Figure 1: Random effect Forest plot of allele contrast model (C vs. A) of 
MTHFR A1298C polymorphism.

Figure 2: Funnel plots of precision by OR of MTHFR A1298C allele contrast 
model (C vs. A).
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The results indicated that MTHFR A1298C polymorphism was not 
associated with autism risk (allele contrast A vs C: OR=0.99, 95% 
CI=0.80-1.23, p=0.005; the heterozygote model AC vs AA: OR = 1.04, 
95% CI = 0.75-1.43, p = 0.82; the homozygous model CC vs AA: OR 
= 0.16, 95% CI = 0.06-0.45, p = 0.006; the dominant model CC+AC 
vs AA: OR = 0.45, 95% CI = 0.25-0.80, p = 0.006; and recessive model 
CC vs AC+AA: OR = 0.15, 95% CI = 0.06-0.37, p<0.0001). In order 
to derive a more precise result and to clarify the heterogeneity among 
studies, author conducted a subgroup meta-analysis stratified with 
the ethnicity. Six studies were from Caucasian population and only 
one study was from Asian population, so sub group analysis was 
performed only on Caucasian studies only. In this subgroup analysis, 
no significant association between MTHFR A1298C polymorphism 
and autism susceptibility was found in Caucasian population. 

Publication bias
The shape of the funnel plots showed that the dots were 

almost symmetrically distributed and were predominantly in 95% 
confidence limits (dominant model, Figure 2). The results of Egger’s 
test statistically confirmed the absence of publication bias in the 
dominant model (p= 0.67).

Discussion
Normal activity of MTHFR is required for normal genome 

methylation and imprinting. The DNA methylation or epigenetic 
programming is essential for gene imprinting and cell differentiation 
during embryogenesis [48]. Most critical period of epigenetic 
programming are prenatal and early post natal, when DNA 
methylation is essential for development of normal brain and neuron 
networks [15]. Genetic, epigenetic and environment factors play 
important role in autism rate and symptom severity [15]. 

The epigenetic mechanism controls several processes during 

neurodevelopment which occurs prenatally and early postnatal up to 
2 years of age like (i) establishment of neuron networks, (ii) selected 
cell death, (iii) synaptogenesis and (iv).

Pruning of inappropriate dendritic arbors and synapses etc. High 
concentration of Hcy and its metabolites inhibit activity of methyl 
transferases like Catechol-O-methyl transferase (COMT) [49]. And 
experiments on animal models have showed that COMT activity 
is high during early embryogenesis at the time of development 
of sympathetic nervous system [50]. COMT degrades dopamine 
neurotransmitter by transferring methyl group from SAM to 
dopamine. Excess dopamine inhibits expression of brain derived 
neurotrophic factor (BDNF) [51], which is essential for normal 
brain development [45]. Abnormal methylation due to variant 
MTHFR enzyme reduced the activity of COMT and increased the 
concentration of dopamine, which consequently inhibit the synthesis 
of BDNF and abnormal neurodevelopment is resulted [51].

Meta-analysis is an acceptable useful methodology suitable for 
elucidating genetic factors in different diseases/disorders. Several 
meta-analysis were published which evaluated risk of folate pathway 
genes polymorphism for different disease and disorders- like Down 
syndrome [52-54], orofacial clefts [55,56], recurrent pregnancy loss 
[57,58], male infertility [59], schizophrenia [60,61], depression [62], 
autism [63], Alzheimer’s disease [64], breast cancer [65,66], prostate 
cancer [67], colorectal cancer [68] and ovary cancer [69] etc.

Certain limitations exist in the meta-analysis- (i) present meta-
analysis based on unadjusted data, (ii) only seven studies and small 
sample size (2936) limited the ability to draw more solid conclusions, 
(iii) there is marked heterogeneity among studies, (iv) although the 
Egger’s test did not show any publication bias, selection bias could 
have occurred, because only published studies were included in 
present meta-analysis, (vi) interactions between gene–gene and gene–

Study Population Case/Control
Case genotype Control Genotype

HWE P- value
AA AC CC AA AC CC

Boris et al.,2004 Caucasian 168/159 93 65 10 70 75 14 0.33

James et al.,2006 Caucasian 356/204 175 147 34 103 77 24 0.10

Mohammad et al.,2009 Asian 138/138 35 59 44 48 32 58 0.00

Liu et al.,2011 Caucasian 205/382 109 81 15 170 175 37 0.40

Schmidt et al.,2011 Caucasian 296/177 160 117 19 89 76 12 0.43

Park et al., 2014 Caucasian 236/423 147 75 14 298 114 11 0.98

Meguid et al.,2015 Caucasian 24/30 0 23 1 12 16 2 0.27

Table 1: Distribution of different MTHFR genotypes in seven included meta-analysis.

Genetic Models Fixed effect
OR (95% CI), p

Random effect
OR (95% CI), p Heterogeneity p-value (Q test) I2 (%) Publication Bias (p of Egger’s 

test)
All studies (32)

Allele Contrast (C vs A) 0.95 (0.84-1.07), 0.4 0.99(0.80-1.23),0.0051 0.01 64.81 0.74

Co-dominant ( AC vs AA) 1.001(0.85-1.17),0.9 1.04(0.75-1.43),0.82 0.001 73.67 0.39

Homozygote (CC vs AA) 0.13(0.10-0.15),<0.0001 0.16(0.06-0.45),0.0006 <0.0001 94.87 0.3

Dominant (CC+ AC vs AA) 0.44(0.37-0.50),<0.0001 0.45(0.25-0.80),0.006 <0.0001 93.62 0.67

Recessive (CC vs AC+AA) 0.12(0.1-0.14),<0.0001 0.15(0.06-0.37),<0.0001 <0.0001 94.15 0.34

Table 2: Summary estimates for the odds ratio (OR) of MTHFR A1298C in various allele/genotype contrasts, the significance level (p value) of heterogeneity test (Q 
test), and the I2 metric and publication bias p-value (Egger Test).
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environment could not be included in present meta-analysis due to a 
lack of relative data and (vii) only four databases were searched, so it 
might be possible that few relevant studies were left. 

Results of present meta-analysis suggested that A1298C 
polymorphism of MTHFR gene was not a risk factor for autism 
susceptibility in overall population as well as, in Caucasian 
populations. Large studies that assess the interrelations between 
folate intake and MTHFR polymorphism are needed to further clarify 
the role of MTHFR polymorphism in the development of autism.
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