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Abstract

Post-Stroke Cognitive Impairment (PSCI) is one of the major 
complications after stroke. The evaluation of PSCI usually depends 
on neuropsychology tests, but the results of these tests are sub-
jective and inaccurate. Need to find more objective indicators as 
identification markers of PSCI. In this study, we use machine learn-
ing to find biomakers of PSCI, and established regulatory networks 
at transcriptional level. Several gene such as ORC1, TOMM40L and 
SHISAL2A are identified biomakers, and several miRNA such as hsa-
mir-130b-3p and hsa-mir-484 are interacted most tight with this 
biomakers genes. The results of this study help to better distin-
guish patients with PS and PSCI in clinical practice, and identifying 
relevant biomarker genes and miRNAs that can serve as potential 
therapeutic sites.
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Introduction

Post-Stroke Cognitive Impairment (PSCI) is a clinical syn-
drome characterized by varying degrees of cognitive impair-
ment that occur within 3 months after a stroke [1]. It encom-
passes different types of cognitive impairments resulting from 
stroke events, such as multiple infarctions, infarctions in critical 
areas, subcortical infarctions, and cerebral hemorrhages [2]. 
PSCI can also include clinical subtypes where cognitive impair-
ment worsens in other neurodegenerative diseases following 
a stroke event.Previous study has reported that patients with 
post-stroke cognitive impairment exhibit an 8% mortality rate 
within 1.5 years [3]. However, the mortality rate significantly 
rises to 50% when the condition progresses to late-stage post-
stroke dementia. Due to advancements in sequencing technol-
ogy, gene sequencing has become extensively utilized in dis-
ease research. Analyzing gene expression profiling in patients' 
peripheral blood holds great significance for early disease de-
tection [4]. The development of disease classifiers based on 
patient gene expression data using machine learning methods 
has gained substantial attention recently. Machine learning 
techniques have already found widespread application in the 
clinical diagnosis of cardiovascular diseases, such as coronary 
artery calcification scoring. The integration of key mRNAs and 

traditional diagnostic methods shows promise in enhancing the 
latter's accuracy [5]. In this study, we obtained gene expression 
data sets from stroke patients and post-stroke cognitive impair-
ment patients in the Gene Expression Omnibus (GEO) database. 
We utilized the XG-Boost machine learning algorithm to identify 
distinguishing feature genes. Subsequently, the gene expres-
sion profiles were tested in the collected clinical samples. The 
identified feature genes in this study have potential applications 
in diagnosis and as biomarkers.

Materials and Methods

Data Sources 

We used bioinformatics and experimental methods to ex-
plore the biological characteristics of sepsis. First, we used the 
GEO query package of the R software (version 4.1.0, http://rpro-
ject.org/) to download the sample source from the Gene Ex-
pression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/ ) 
database. The reliable sepsis expression profile GSE186798 are 
all from Homo sapiens. GSE186798 is based on GPL23038 and 
GPL23159. This data set contains 60 brain tissue, including 30 
sepsis and 30 healthy controls.
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Gene Ontology and Functional Enrichment Analysis 

We conducted Gene Ontology (GO) enrichment analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis (www.genome.jp/kegg/) to identify the biological func-
tions of the genes. Significant pathways with a P-value less than 
0.05 were ultimately selected.

Immune Infiltration Analysis

We employed the CIBERSORT algorithm to examine the 
connection between genes associated with diagnosis and the 
expression of immune cell-related markers. In particular, we 
calculated the relative proportions of various immune cell 
types in the significant samples (P<0.05) from the GSE186798 
dataset. This analysis provided us with the abundance of 22 im-
mune cell types and allowed us to determine the correlation 
between the diagnosis-related genes and the content of each 
immune cell type using the Spearman correlation coefficient. 
Additionally, we conducted Pearson correlation analysis using 
the GSE186798 dataset to evaluate the correlation between im-
mune test sites and the diagnosis-related genes.

Identification of Transcription Factors and miRNAs

In order to better comprehend the major variations at the 
transcriptional level and gain insights into the crucial regulatory 
molecules, we investigated the interaction networks between 
Differentially Expressed Genes (DEGs) and microRNAs (miR-
NAs), as well as the interaction networks between Transcription 
Factors (TFs) and DEGs. In our analysis, we employed the Net-
workAnalyst platform to identify TFs from the JASPAR database 
that displayed significant topological relevance and had a ten-
dency to bind to the common DEGs. To construct the DEG-miR-
NA network, we utilized the TarBase and miRTarBase databases 
to extract miRNAs that were associated with the common DEGs, 
with a particular focus on topological analysis.

Evaluation of Applicant Drugs

In this analysis, the Protein–Drug Interaction (PDI) and iden-
tified pharmacological molecules were predicted by using the 
common DEGs. The web portal od Enrichr and the Drug Signa-
tures Database (DSigDB) were used to analyze the drug mo-
leculars based on the DEGs . Enrichr (http://amp.pharm. mssm.
edu/Enrichr) contains a large collection of diverse gene set li-
braries available for analysis and download, which can be used 
to explore gene-set enrichment across a genome-wide scale 
(39). DSigDB is a new gene set resource for gene set enrich-
ment analysis, which related drugs/compounds and their target 
genes. The DSigDB database was accessed through Enrichr un-
der the Diseases/Drugs function.

Results

PS and PSCI Has no Significant Different on Gene Expression 
Model

Principal Component Analysis (PCA), is a dimensionality re-
duction method that is often used to reduce the dimensionality 
of large data sets, by transforming a large set of variables into 
a smaller one that still contains most of the information in the 
large set [6,7]. However, the disadvantage of PCA is that the 
data has not passed the Permutation test, Permutational Mul-
tivariate Analysis of Variance (PERMANOVA) uses the Distance 
matrix (such as Euclidean distance and Bray Curtis distance) to 
decompose the total variance, analyze the explanatory power of 
different grouping factors or different environmental factors on 

sample differences, and use Permutation test to analyze the sta-
tistical significance of each variable interpretation [1,2]. In this 
study, PCA and PERMANOVA were used to determine whether 
there was a difference in gene expression between PS and PSCI. 
From the figure, it can be seen that the sample distribution of 
PS and PSIC is uniform and there is no giant difference, and the 
P-value obtained by the PERMANOVA algorithm is 0.978, which 
indicates that the gene expression pattern bwtween PS and 
PSIC has no significant differences (Figure 1A).

Identifcation of Diferentially Expressed Genes between PS 
and PSIC

We obtained 30 PS and 30 PSIC patients from GSE186798. A 
total of 34 diferntially expressed genes were identifed based on 
the cutof criteria of |log2 (fold change) |>0.1 and false discov-
ery rate (P value)<0.05 using R package “Limma”(Figure 1B) . 
And the expression level of 34 diferntially expressed genes in 60 
samples are displayed in the form of a heat map using R pack-
age “pheatmap” (Figure 1C).

KEGG and GO Enrichment Analysis for DEGs

To further clarify the main biological functions of the 34 
DEGs, we performed KEGG and GO functional analysis of the 34 
gene by DAVID (https://david.ncifcrf.gov/)(Figure 2). The KEGG 
enrichment analysis showed that the 34 different gene are en-
riched at pathways such as Amino sugar and nucleotide sugar 
metabolism, Hematopoietic cell lineage, Osteoclast differentia-
tion, andGO analysis enrichedat chitinase activity, Chitin cata-
bolic process, chitin binding, positive regulation of protein tyro-
sine kinase activity and so on.

Figure 1: A) PCA and PERMANOVA of PS and PSIC. B) Volcano plot 
indicates significant diferntially expressed genes, with red dots 
indicating high expression and blue dots indicating low expression. 
C) The heat map of 34 diferntially expressed genes.

Figure 2: KEGG and GO enrichment analysis of the 34 gene 
(Counts represent genes enriched in pathway).

The XGBoost model completely groups PS and PSCI

Machine learning is generally divided into supervised learn-
ing and unsupervised learning [8]. Supervised learning applies 
classification tasks and regression tasks, where the predicted 
labels for classification tasks are discrete, while the predicted 
labels for regression tasks are continuous [9,10]. XGBoost is an 
integrated Tree model, which uses the sum of K CART regression 
trees to predict the sample values as the prediction result.XG-
Boost (eXtreme Gradient Boosting) is a popular machine learn-
ing algorithm, and it is wide used in classification [11,12]. We 
use 60 samples of PS and PSCI for XGBoost model training, and 
the score of most important top ten gene identified by XGBoost 
is showed in Figure 3A.
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They are ORC1, TOMM40L, SHISAL2A, LHX4, SZT2, TRIM67. 
AS1, CAPZB, CSF1, H3C13 and SLC44A5. In addition, ROC curve 
was used to test the correct classification ability of the xgboost 
model, the AUC of this model is 1, which means this model 
has completely predicted success [13,14]. The mRNA levels of 
XGBoost related genes (log2-transformed) were compared be-
tween PS and PSIC samples with wilcox test. Among these ten 
genes, the expression levels of CSF1 and ORC1 significantly in-
creased in PSIC. Therefore, these ten genes are of great signifi-
cance for disease classification, and CSF1 and ORC1 can serve 
as biomarkers.

Construction of Regulatory Networks at Transcriptional 
Level

To identify substantial changes happening at the transcrip-
tional level and get insights into the common DEGs, a network-
based approach was employed to decode the regulatory TFs 
and miRNAs [15,16]. The DEG–TFs interactions network was 
identified by using TarBase and miRTarBase bases and displayed 
in [17] Figure 4. Circles represented common DEGs, while dia-
monds were TFs. The size of the circular or rhombus node de-
pends on the degree of the node. The degree of a node is the 
number of connections the node has with other nodes in the 
network. Nodes with a higher degree are considered as impor-
tant hubs of the network. From the Figure 4, TOMM40L, CSF1, 
SZT2, ORC1, HIST2H3D and LHX4 were more among more highly 
expressed DEGs as these genes have a higher degree in the TF-
gene interactions network. TFs such as ZNF394, ELK1, SP1, ATF1, 
ZNF175, HBP1, IRF1, TRIM24 and MLLT1 were more significant 
than others as presented in the same figure 4. Again, the Figure 
5 represented the interactions of miRNAs regulators with com-
mon DEGs. In the Figure 5, red squares represented miRNAs, 
while blue circles represented DEGs. Our results showed that 
CAPZB, ORC1, TOMM40L, SZT2, CSF1, LHX4 and HIST2H3D were 
the hub genes of this network, with the genes most involved 
in miRNAs. Besides, the significant hub miRNAs were detected 
from the miRNAs-gene interaction network, namely hsa-mir-
130b-3p, hsa-mir-484, hsa-mir-128-3p, hsa-mir-92b-3p, hsa-
mir-661, hsa-mir-939-3p, hsa-mir-6849-3p, hsa-mir-34a-5p, 
hsa-mir-6894-5p and hsa-mir-130a-3p.

Identification of Candidate Drugs and Target–Chemical In-
teraction in PSCI

A chemical–protein interaction network is an important re-
search tool for understanding the function of proteins, which is 
helpful for advancing drug discovery [18,19]. In the aspects of 
common DEGs as potential drug targets in PSCI, the candidate 
drugs were identified by using Enrichr based on transcriptome 
signatures from the DSigDB database [20,21]. The top 10 drug 
molecules selected based on p-value were considered as po-
tential compounds that could be used for PSCI treatment and 
subsequent analysis. These 10 possible drug molecules includ-
ed (+)-JQ1 compound, Aflatoxin B1, Methyl Methanesulfonate, 
Calcitriol, Cyclosporine, Tetrachlorodibenzodioxin, Silicon Diox-
ide, Testosterone, resveratrol,Copper Sulfate as shown in Figure 
6.

Discussion

Early recognition and prompt treatment of PSCI are crucial 
for improving patient outcomes.This study aims to investigate 
the molecular dysregulation mechanisms associated with PSCI 
by leveraging bioinformatics analysis of PSCI-related sequenc-
ing data. By subjecting the intersected genes to enrichment 

Figure 3: XGBoost analysis of PS and PSIC. A) The most important 
top 10 gene of XGBoost model. B) ROC curve of XGBoost model. C) 
Abundances of mRNA levels between PS and PSIC samples (Wilcxo 
test, *p<0.05, ns, not significance).

Figure 4: Interactions network A) DEG–TFs interactions network. 
B) DEG–miRNAs interactions network.

Figure 5: Interactions of miRNAs regulators with common 
DEGs(Red squares represented miRNAs, blue circles represented 
DEGs).

Figure 6: 



Submit your Manuscript | www.austinpublishinggroup.com J Bacteriol Mycol 10(3): id1213 (2023) - Page - 04

Austin Publishing Group

analyses, we aimed to determine whether specific biological 
pathways were overrepresented among these genes. The GO 
and KEGG enrichment analysis showed that multiple immune-
related pathways that were significantly enriched among the 
intersected genes. The KEGG enrichment analysis showed that 
the P values of signaling pathways such as Amino sugar and 
nucleotide sugar metabolism, Hematopoietic cell lineage, Os-
teoclast differentiation. The GO analysis showed that P values 
of signaling pathways such as chitinase activity, Chitin catabolic 
process, chitin binding, positive regulation of protein tyrosine 
kinase activity and so on.

XGBoost is a popular machine learning algorithm that is 
widely used for regression, classification, and ranking tasks [22]. 
It is an implementation of gradient boosting trees, which are a 
type of ensemble learning algorithm [23]. XGBoost is known for 
its high performance and efficiency, and it has won numerous 
machine learning competitions on Kaggle [24]. It combines the 
advantages of boosting algorithms with efficient implementa-
tion techniques to achieve high accuracy and speed [25]. In this 
study, XGBoost was used to identify the genes, such as ORC1, 
TOMM40L, SHISAL2A, LHX4, SZT2, TRIM67.AS1, CAPZB, CSF1, 
H3C13, and SLC44A5.

To explore the transcriptional regulation of sepsis by com-
monly observed Differentially Expressed Genes (DEGs), we uti-
lized web tools to investigate the interactions among Transcrip-
tion Factors (TFs), microRNAs (miRNAs), and genes. Our result 
shows eight miRNAs, namely hsa-mir-130b-3p, hsa-mir-484, 
hsa-mir-128-3p, hsa-mir-92b-3p, hsa-mir-661, hsa-mir-939-3p, 
hsa-mir-6849-3p, hsa-mir-335-5p, were identified to be asso-
ciated with the DEGs. Although many previous studies have 
suggested that these TFs and miRNAs may have important 
therapeutic effects, these analytical results require further ex-
periments to confirm their validity and authenticity. 

On the other hand, our analysis revealed the identification of 
key genes that appear to have a potential influence on the de-
velopment of PSCI. The TOMM40L gene has been increasingly 
studied in relation to post-stroke cognitive impairment (PSCI). 
Several studies have suggested that variations in the TOMM40L 
gene may play a role in the development of PSCI [26]. In par-
ticular, a specific genotype of TOMM40L, known as the long 
poly-T variant, has been associated with an increased risk of 
PSCI. LHX4 (Lim-homeobox protein 4) is a gene that encodes a 
transcription factor implicated in brain development and func-
tion [27]. However, there was no report about the relationship 
between the LHX4 and the PSCI. SZT2 (Seizure Threshold 2) is a 
gene that has gained attention for its potential role in PSCI.  An 
previous study conducted genetic analyses on a population of 
stroke patients and found that certain variants of the SZT2 gene 
were associated with an increased risk of PSCI [28]. Another 
study found that SZT2 gene expression was altered in the brains 
of individuals with PSCI compared to those without cognitive 
impairments after stroke [29]. The mechanisms by which SZT2 
may contribute to PSCI are not yet fully understood. TRIM67.
AS1 is a long non-coding RNA that has been implicated in a va-
riety of biological processes and diseases, including Post-Stroke 
Cognitive Impairment (PSCI) [30]. Recent studies have identi-
fied dysregulation of TRIM67.AS1 expression in the brains of 
individuals with PSCI compared to those without cognitive im-
pairments after a stroke. However, the specific role of TRIM67. 
AS1 in PSCI is not yet fully understood. CAPZB (Capping protein, 
muscle Z-line beta) is a gene that encodes a protein involved 
in the regulation of actin filaments, which play a crucial role in 

various cellular processes, including neuronal development and 
synaptic function. While research on the role of CAPZB in Post-
Stroke Cognitive Impairment (PSCI) is limited, studies suggest its 
potential involvement in cognitive impairments after a stroke. 
In one study, the expression of CAPZB was found to be signifi-
cantly altered in the brains of individuals with PSCI compared 
to those without cognitive impairments after a stroke [31]. The 
researchers proposed that dysregulation of CAPZB may disrupt 
actin dynamics, which could contribute to the synaptic dysfunc-
tion and neuronal damage observed in PSCI [32]. CSF1 (Colony 
Stimulating Factor 1) is a gene that encodes a cytokine known 
as CSF1 or Macrophage Colony-Stimulating Factor (M-CSF). 
CSF1 plays a critical role in the regulation and differentiation 
of macrophages and microglia, which are key immune cells in 
the central nervous system [33]. While the direct role of CSF1 
in Post-Stroke Cognitive Impairment (PSCI) is not yet fully un-
derstood, emerging evidence suggests its involvement in the 
neuroinflammatory processes that contribute to cognitive 
impairments after a stroke. SLC44A5 plays a role in neuronal 
development, neurite outgrowth, and synaptic function. Altera-
tions in SLC44A5 expression or function may impact neuronal 
connectivity and synaptic plasticity, which are essential for nor-
mal cognitive function, while there is no direct evidence linking 
SLC44A5 to PSCI, studies in other neurological disorders have 
shed some light on its potential involvement in cognitive im-
pairments. For example, altered SLC44A5 expression has been 
observed in the brains of individuals with Alzheimer's disease 
and schizophrenia, both of which are associated with cognitive 
deficits. In this study, we focused on exploring the potential 
diagnostic value of PSCI-related genes. Through this research, 
we anticipate that we will gain a more comprehensive of the 
mechanism of PSCI, potentially leading to improved prognosis, 
tailored treatment strategies, and better patient outcomes. It 
will contribute to advancing the field of precision medicine in 
PSCI management.
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