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Abstract

Antibiotics play an important role in veterinary medicine and 
serve as important tools to maintain animal health and ensure 
food safety. However, heavy use of antibiotics in animal produc-
tion can lead to increased antimicrobial resistance from livestock 
to humans. Foodborne pathogens are a major public health and 
food safety problem. Listeria monocytogenes cause severe disea-
ses and outbreaks associated to the consumption of contaminated 
food products, in humans. In the treatment of infections, L. mo-
nocytogenes are susceptible to several antimicrobial agents, howe-
ver, several recent studies have already reported cases of strains 
resistant to several classes of antibiotics, such as ampicillin, cefota-
xime, tetracyclines, sulfonamides, β-lactams, and penicillin among 
livestock animals, but also the emergence of multi-resistant strains 
in these environments have also been described in several recent 
studies. This review focuses on the occurrence and prevalence L. 
monocytogenes in livestock and derived food-products and strives 
to provide information on prevalence of L. monocytogenes in lives-
tock animals, and derived food products, and describe the main 
antimicrobial resistance and genomic analysis in strains associated 
and isolated from regions worldwide. 

Keywords: Antibiotic resistance; Foodborne pathogens; L. mo-
nocytogenes; Livestock; Derived food-products
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Introduction

Listeria spp. is a non-spore forming, small Gram-positive rod-
shaped bacteria belonging to the phylum Firmicutes, class Ba-
cilli, order Bacillales, family Listeriaceae. They are facultatively 
anaerobe microorganisms,  [1-3] and are actively motile, capa-
ble of  prospering at low temperatures and in severe conditions 
[4]. They can tolerate salt conditions (NaCl) up to 20% [w/v], 
grow in a pH range of 4.4-9.6, and thrive in various extreme 
environmental conditions [1,2] and different environmental 
niches such as humans, farms, animals, food, food-processing 
environments, plants, soils, water, silage and sewage [5]. They 
can survive in water environments and exhibit optimal growth 
at values around 0.97. They can persist for extended periods at 
even lower values. such as  0.83 [2]. To distinguish the Listeria 
spp. a variety of tests need to be carried out, including hemoly-
sis, mannitol with acid production, D-xylose, L-rhamnose, and 
alpha-methyl-D-mannoside [2].

Listeria is a genus of  28 species of ubiquitous bacteria in 
different niches [1]. It is grouped into two groups: “Listeria sen-
su lato” and “Listeria sensu stricto”. “Listeria sensu stricto “in-
cludes L. monocytogenes, L. innocua, L. seelgerii, L. welshimeri, 
and L. marthii. These species are catalase-positive, motile at 
30°C, and grow below or at 4°C. “Listeria sensu lato” includes L. 
grayi, L. fleischmannii, L. floridensis, L. aquatica, L. newyorken-
sis, L. cornellensis, L. rocourtiae, L. weihenstephanensis, L. gran-
densis, L. riparia, and L. booriae [1,6]. Among these species, L. 
monocytogenes and L. ivanovii are considered the most patho-
genic species, and L. monocytogenes is responsible for several 
outbreaks in humans and animals [3,4].

Listeria monocytogenes, first described and isolated by 
G. Hülphers in 1919, was later identified by E.G.D. Murray in 
1923 and J.H. Pirie in 1925. In 1940, it was recognized as L. mo-
nocytogenes [1,7,8]. Nyfeldt first isolated it in humans in 1929 
and later described the circling diseases caused by it in sheep 
[1]. Listeriosis is characterized as a zoonotic disease resulting 
from the ingestion of contaminated food by L. monocytogenes. 
Systemic dissemination of pathogens from the gastrointestinal 
tract depends on their ability to overcome barriers such as the  
intestinal, blood-brain, and placental barriers [1,9]. Listeriosis is 
characterized by septisis and central nervous system infections, 
occurring primarily in immunocompromised hosts, the elderly, 
and pregnant women, as well as localized infections anatomi-
cally rare. Gastroenteritis is caused by healthy individuals when 
the ingested contaminated ready-to-eat foods such as hotdogs, 
cheeses (unpasteurised milk), smoked fish, ice cream, patés, 
cantaloupe, apple, and vegetables [9,10]. Although morbidity 
is very low in the normal population, these epidemics are cha-
racterized by high hospitalization and mortality rates, especially 
in high-risk groups with hospitalization rates higher than 95% in 
these cases [1,10]. This microorganism is responsible for 1600 

illnesses and 260 deaths annually in the United States, has a 
zero-tolerance policy due to its higher disease severity [11]. 
Listeria species, more specific L. monocytogenes is a ubiqui-
tous bacterium (Figure 1) known for its adaptability, including 
antibiotic resistance genes and biofilm formation [2,10]. Its re-
sistance to adverse environmental conditions such as high salt 
concentration, temperature range low pH and oxygen-limiting 
conditions, allows it to spread through food and multiply on va-
rious surfaces [9]. 

Prevalence and Occurrence in Livestock

In this review article, we gathered information resulting 
mainly from studies that detected Listeria species in livestock 
animals, such as goats, cattle, buffaloes, sheeps, cows, dairy 
cattle, chickens, slaughterhouses, poultry farms and pigs are 
summarized in Table 1.

Figure 1: Transmission routes of Listeria species.

Table 1: Prevalence of Listeria species reported livestock animals.

Location
Listeria 
Species

Livestock 
animals

Sample 
origin

Collected 
samples

Prevalence 

(%)
Reference

India
L. 

monocytogenes
Goat

Faecal
Nasal

Vaginal
95

3.15
6.3
3.1

[80]

Latvia

L. 

monocytogenes

L. innocua

L. seeligeri

L. ivanovii

Cattle Faecal 111

25.2
33.2
15.3
2.7

[16]

Egypt

L. 

monocytogenes

L. ivanovii

L. innocua

L. grayi

Cattle Faecal 70

4.3
5.7
2.9
5.7

L. ivanovii
Buffaloes Faecal 30

6.7
L. innocua 3.3

L. grayi 6.7
L. 

monocytogenes

Sheep Faecal 50

8.0

L. ivanovii 6.0
L. innocua 2.0

L. grayi 2.0
L. ivanovii Goats Faecal 25 8.0
L. innocua 4.0

Turkey

L. 

monocytogenes

L. innocua

L. ivanovii

Cows Milk 68
4.41

10.29
4.41

[13]

L. 

monocytogenes

Slaughterhouse 

A
Chicken 11 0

[55]Slaughterhouse 

B
Chicken 12 16.7

Norway
L. 

monocytogenes

Dairy 
cattle

Faecal 99 30 [22]

Spain
L. 

monocytogenes

Dairy 
Cattle

Faecal 79 65 [81]

Italy
L. 

monocytogenes

Broiler 
chicken 

meat

Neck 
skin

520 26.7 [82]

Canada
L. 

monocytogenes

Slaughterhouses A

Slaughterhouses B

Slaughterhouses C

Slaughterhouses D

Swine 
meat

624

9.3
8.8

15.7
5.1

[83]

USA

L. 

monocytogenes

Dairy 
cattle

Poultry
Manure 67

13.1
2.2

[56]

L. 

monocytogenes

Poultry 
farms

Faecal 1537 1.8 [84]

Nigeria

L.monocytogenes

L.ivanovii

L.grayi

L. innocua

Broiler 
chickens

Faecal 114

13.2
7.9
2.6
2.6

[65]

Germany
L.monocytogenes

L. innocua

Slaughter 
pigs

Tonsil 430
1.6
1.2

[19]
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Listeria species are widely disseminated in  the environmen-
tal, but infection in farm animals can occur when grazing on 
contaminated fields or fields fertilized with contaminated ma-
nure [12,13]. Contaminated food and livestock are the source 
of many foodborne pathogens, and L. monocytogenes has been 
documented in a broad range of animal species, but commonly 
affect livestock animals and is responsible for listeriosis in ani-
mals and humans [14,15]. L. ivanovii, also is associated with ani-
mal infections and are found to be the most pathogenic along 
with L. monocytogenes [16]. Infections caused by Listeria spp. 
have a negative impact on the livestock economy as well as the 
food processing industry, including human health [12].

Regarding the prevalence of Listeria spp. found in the livesto-
ck environment, five Listeria species have been identified name-
ly L. monocytogenes, L. innocua, L. seeligeri and L. ivanovii has 
been isolated from all types of samples such as faecal, nasal, 
vaginal, milk, skins, meat, manure and tosil. L. monocytogenes 
showed the highest prevalence and was isolated in most studies 
in Table 1. According to  Castro et al. (2018), dairy cattle farms 
have been identified as significant reservoirs of L. monocyto-
genes genotypes associated with human listeriosis outbreaks 
[14]. However, there are other causes for these contaminations 
and transmission of L. monocytogenes to the farm environment 
from a multitude of sources, like poor-quality silage [17]. 

The prevalence of Listeria spp. infection in bovine/cattle farm 
environments is often high, including subtypes associated with 
human infections and foodborne outbreaks, mainly detected in 
feces and feeding units [18]. In Table 1, is possible to observe 
six studies related on bovine/cattle farming in various regions 
of the world such as Latvia, Egypt, Turkey, Norway, Spain and 
US, showing rates of Listeria spp. infection ranging from 65% 
to 2%. The presence of different species has also been confir-
med., with L. innocua being the most common in Turkey and 
Latvia, followed by L. monocytogenes in Norway and Spain. The 
prevalence rate in the USA was 13% and the prevalence of Lis-
teria spp. in cattle environments confirms that this is an impor-
tant reservoir of the species. Livestock likely spread pathogens 
asymptomatically, showing no signs of illness or shedding bac-
teria into the farm environmen [16]. 

 In pig production, the main problem caused by this patho-
genic bacteria is the fact that animals can carry the bacteria 
without showing any signs of disease at slaughter, leading to di-
rect contamination of carcasses and meat at the slaughterhou-
se [14,18]. The study in Germany found low prevalence of Lis-
teria species, with 1.6% for L. monocytogenes and 1.6% for L. 
innocua. However, it suggests that tonsil samples can harbor 
these species, potentially posing a risk of cross-contamination 
and food chain spread [19]. 

In avian farms (chickens, turkeys, waterfowl, geese, ducks, 
game birds, pigeons, parrots, etc.), the Listeria spp. outbreaks 
are rare and are more frequently reported as an opportunistic 
pathogen, however, are important potential vectors for conta-
mination of the processing environment. Sporadic cases of lis-
teriosis have been attributed to poultry, indicating that poul-
try can serve as a potential source of Listeria spp. infection in 
humans. Listeria spp.  have been isolated from various stages 
of the poultry production and processing continuum [14,20]. 
Although, as described, this bacterium is not common in poul-
try, we can see six studies in our Table 1 in which Listeria spp. 
was isolated from different sources, such as manure, faecal and 
meat samples. The most common species is L. monocytogenes 
with a prevalence ranging from 27% and 0%. Other three spe-

cies were also detected in the study carried out in Nigeria [21], 
namely L.ivanovii, L.grayi and L. innocua, with low prevalence. 

Improper hygienic practices are strongly associated with the 
presence of this species in livestock, suggesting that good hy-
giene is not the only important factor in livestock and that the 
majority contamination comes from animal and environmental 
sources. Therefore, all the implementing measures established 
in farms and their surroundings at every stage of production are 
of critical  importance to have a significant impact in food safety 
in the future [14,16,22].

Antimicrobial Resistance in L. monocytogenes: Emerging 
Crisis 

Antimicrobial resistance is an emerging threat to public he-
alth and the development of antibiotic resistance in bacteria 
has been associated to the use and misuse of antimicrobial in 
human health and veterinary [23,24]. The use of antibiotics in 
food animals is common and has been used on a large scale for 
long periods of time. As a result, a positive selection of resistant 
bacterial clones can spread to humans through the food chain, 
with bacteria acquiring a wide variety of antibiotic resistance 
genes. Commensal organisms found in food or in the gastroin-
testinal tract of animals and humans that can  be a possible way 
of contamination for Listeria spp. and other pathogens [23,25].  

Therapeutic options including the use of β-lactam (peni-
cillin or ampicillin) or in combination with an aminoglycoside, 
mainly gentamicin and amoxicillin [26,27], are the antibiotics 
selected in the treatment of severe infections or if the patient is 
allergic to β-lactams. In the case of resistance to the antibiotics 
like fluoroquinolones, macrolides and tetracyclines, trimetho-
prim-sulfamethoxazole are successfully used to treat listeriosis 
[10,26]. The use of antibiotics in human medicine, veterinary 
medicine, and agriculture actually plays an important role in 
the emergence and spread of antibiotic resistance [28]. In lives-
tock, veterinarians, and farmers play an important role in the 
use of antibiotics. Antibiotics are often used both therapeuti-
cally and sub therapeutically for the treatment and prevention 
(prophylaxis) of bacterial diseases in animals [29–31]. The use 
antimicrobials at industrial scale for growth promotion purpo-
ses in animal agriculture has been a significant concern. Since 
2006, European Union (EU) countries and World Organisation 
for Animal Health (WOAH) banned the use of antimicrobial as 
growth promoters in animal feed and is believed that the use 
of antimicrobials is one of the major contributor to the global 
trend of antimicrobial resistance since they have been used for 
at least 50 years [28,30,32]. 

In fact, β-lactams, tetracyclines, aminoglycosides, lincosa-
mides, quinolones, polypeptides, amphenicols, macrolides, 
and sulfonamides are indeed among the most commonly used 
classes of antibiotics in food animal production [33]. For cattle, 
poultry, and pigs, the estimated average annual consumption of 
antimicrobials is 45 mg/kg, 148 mg/kg, and 172 mg/kg, respec-
tively. Global antibiotic consumption is projected  to increase, 
estimated to increase from 63,151 ± 1,560 tons to 105,596 ± 
3,605 tons by 2030 [32]. Predictable patterns of intensification 
in food systems often correlate with increased demand for an-
timicrobial use [31,33]. As a result, bacteria present in food ani-
mals often proliferate in fresh meat and milk and dairy products 
and can act as a reservoir for resistance genes that can be trans-
ferred to humans [32,33]. The first case of antibiotic resistance 
in a food animal was reported after streptomycin was adminis-
tered to turkeys in 1951. As a result, widespread resistance to 
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Table 2: Antimicrobial resistance and genomic analysis of L. monocytogenes in different regions.

Location Animals
Num-
ber of 

isolates

Antimicrobial resistance Genomic analysis Reference

Method Antibiotics Resistance, %
Antimicrobial 

genes detected Method
MLST

Lineage (%) ST CC

Jordan
Cattle
Sheep
Goat

32 Disk diffu-
sion

Ampicillin
Clindamycin
Penicillin
Erythromycin
Quinupristin/
dalfopristin
Streptomycin
Teicoplanin
Linezolid
Vancomycin
Kanamycin
Tetracycline
Gentamicin
Chlorampheni-
col
Ceftriaxone
Ciprofloxacin

96.9
96.9
93.8
93.8
87.5
75.8
75.0
75.0
71.9
71.9
71.9
50.0
43.8
34.4
15.6

- - - - - [51]

Morocco

Raw bovine 
meat 1

Disk diffu-
sion

Amoxicillin/cla-
vulanic acid
Ampicillin

- -

- - - -

[52]
Raw poultry 
meat 1

Amoxicillin/
clavulanic
Erythromycin
sulphamethox-
azole
Tetracycline

- -

Raw beef meat 10

Ampicillin
Penicillin
Amoxicillin
Sulfamethoxa-
zole
Sulfamethoxa-
zole/ trim-
ethoprim
Gentamicin
Streptomycin
Kanamycin
Tetracycline
Chlorampheni-
col
Erythromycin
Vancomycin

80
50

100
20
30

10
50
10
50
10
50
50

- [53]

Spain Meat and dairy 
products 7 Microdilu-

tion

Clindamycin
Tetracycline
Ciprofloxacin
Ampicillin
Penicillin
Gentamycin

90
30
26
16
10
2

tet M PCR - - - [23]

Australia
Dairy products 
and
Meat products

100

Disk diffu-
sion and 
microdilu-
tion

Ciprofloxacin
Erythromycin

2.1
1

fosX, lmrB, 
ermB, fepR PCR

Lineage II, 
(56%) Lin-

eage I(43%), 
Lineage III 

(1%)

- CC1 [85]

Brazil
Lairage, slaugh-
tering and 
cutting room

16 Disk diffu-
sion

Kanamycin
Clindamycin
Tetracycline
Erythromycin
Ampicillin
Penicillin
Sulfamethoxa-
zole- trim-
ethoprim

6.2
31.2
6.2
6.2
100

18.6.2
75

- PCR - - - [64]

South 
Africa

Raw milk 2

Disk diffu-
sion

Sulfamethoxazole
Trimethoprim
Erythromycin
Cefotetan
Oxytetracycline

71.43
52.86
42.86
42.86
42.86

blaTEM, 
blaSHV,blaZ, 
tetA, tetD, 
tetG, tetM, 

tetK, aph(3)-IIa 
(aphA2)a, sul1, 

sul2

PCR - - - [86]

milk/fresh milk 7

Cheese 12

Ready-to-eat 
products 6 - - -

EmrB/QacA, 
Bcr/CflA, 

SugE, Tn6188, 
bcrABC, fosX, 

tetA, tetM, 
mecC, mrB, 
msrA, lde, 

mdrL.

Data-
bases

lineage II 
and lineage

ST1, 
ST121, 
ST204,
ST876

- [68]
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Turkey

Poultry Slaugh-
terhouse A 11 Disk diffu-

sion
Sulfamethoxa-
zole/trim-
ethoprim
Penicillin G
Erythromycin

5

3
2

- PCR

Lineage I 
(90.26%, 
Lineage II 
(5.82%), 

Lineage III 
(3.88%)

- - [55]
Poultry Slaugh-
terhouse B 12 Disk diffu-

sion

USA

Dairy Manure 58
Broth mi-
crodilution 
method

Ampicillin
Penicillin G
Chlorampheni-
col
Ciprofloxacin
Nalidixic acid
Kanamycin
Gentamycin
Streptomycin
Tetracycline
Erythromycin
Azithromycin
Ceftriaxone
Cefoxitin
Trimethoprim/ 
Sulfamethoxa-
zole
Meropenem
Vancomycin
Linezolid
Nitrofurantoin
Clindamycin
Rifampicin
Levofloxacin

89.5
47.7
61.7
79

95.5
88

77.6
98.5
34.3
37.3
100
100
100
100

100
67
58
8.9
100
100
91

Lde, ampC, 
aadB, penA, 
ermB, tet(O)

PCR - - - [56]

Poultry Ma-
nure 9

Broth mi-
crodilution 
method

Manure 47

Soil 20

China

Food (frozen 
beef, frozen 
pork, fresh fish, 
fresh aquatic 
products, 
frozen chicken, 
frozen sheep 
casing and 
dairy food 
products)

101
Micro-
dilution 
method

Oxacillin
Clindamycin
Daptomycin
Chlorampheni-
col
Tetracycline
Ciprofloxacin
Erythromycin
imipenem

39.33
16.85
6.74
5.62
4.49
3.37
3.37
1.12

aph(4)Ia, ermC, 
fexA, tetK, 

tetM, tetM, 
tetK; fexA, ermC

PCR

lineage II 
(64.20 %); 
lineage I 
(35.80 %)

ST9, 
ST121, 
ST37, 
ST8, 
ST1, 

ST204, 
ST31, 
ST59, 
ST2, 
ST3, 
ST4, 
ST7, 

ST155, 
ST21, 

ST388, 
ST5, 
ST6, 

ST77, 
ST191, 

ST2117, 
ST224, 
ST26, 

ST325, 
ST426 
ST451

- [57]

Meat products 90 - - -

tet(L), tet(M), 
aph(3′)-III, 

aac(6′)-Iaa, str, 
erm(B), Isa(A), 

optrA, Cat, fexB, 
dfrG, sul1, norB, 

bcrA, aadA3, 
qnrA2, vanRG

PCR lineage II 
andlineage I

ST2, 
ST9, 

ST155, 
ST8, 

ST121, 
ST120, 
ST87, 

ST196, 
ST11, 

ST387, 
ST705

CC9, 
CC121, 
CC155, 

CC8, 
CC87, 
CC2

[58]

Poland

Ready-to-eat 
products 
(heat-treated 
sausages, 
delicatessen, 
salads, and 
packed dinner 
dishes, Fish 
seafood.

146
Microbroth 
dilution 
method

Oxacillin
Clindamycin
Ceftriaxone
Linezolid
Ciprofloxacin
Gatifloxacin
Gentamycin
tetracycline

90.4
54.1
49.3
3.4
0.7
0.7
0.7

- PCR -

ST9, 
ST3, 

ST580, 
ST1266, 
ST1267 
ST1268)

CC8, 
CC5, 
CC9, 
CC2, 
CC5, 
CC8, 
CC9

[59]

Central 
Romania

Ready-to-eat 
processed 
meet

17
Vitek2 
Compact 
automated 
system

Benzylpenicillin
fusidic acid
oxacillin
Fosfomycin
Clindamycin
Imipenem
Ciprofloxacin
Rifampin
trimethoprim-
sulfamethox-
azole
tetracycline

100
100
88.2
82.4
76.5
52.9
41.2
41.2
29.4
29.4

- PCR

lineage II 
(58.9%), 
lineage I 
(29.4%), 

lineage III 
/11.8)

- - [60]
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antibiotics such as  tetracyclines, sulfonamides, β-lactams, and 
penicillin, has been observed in a variety of other food-produ-
cing animals [32].

Classical microbiological methods and molecular techniques 
are of great importance for testing Listeria monocytogenes in 
food and manufacturing environments. Molecular-based appro-
aches offer improved discriminatory power for differentiating 
bacterial strains in epidemiological studies [34]. Whole Genome 
Sequencing (WGS) technologies are rapidly developing novel ty-
ping methods due to their rapid, sensitivity, and high accuracy. 
They provide extensive additional information, and exhibiting 
the highest discriminatory power when comparing various 
organisms, making them effective in detecting foodborne ou-
tbreaks and studying pathogenic bacteria molecular epidemio-
logy, including L. monocytogenes [35-38]. Analyzing bacterial 
genome sequences provides detailed information about isola-
tes relationships, molecular types and virulence and resistance 
markers [36,37,39]. This technology is suitable for national and 
international surveillance systems, enhancing food safety and 
public health efforts  by understanding infectious diseases epi-
demiology in the future [39]. The study of lineages and clonal 
complex is crucial for understanding the relationship between 
genetic variation within a species and traits like pathogenic po-
tential, virulence, and epidemiology [40]. L. monocytogenes 
exhibits a structured population consisting of 14 serotypes and 
4 distinct lineages (I, II III, and IV), which, from an evolutionary 
perspective, could be regarded as distinct species [41]. Each li-
neage is characterized by specific serotypes: lineage I includes 
serotypes 1/2b, 3b, 4b, 4e and 7; lineage II includes serotypes 
1/2a, 1/2 c, 3a and 3c; lineage III includes serotypes 4b, 1/2a, 
4a and 4c; and lineage IV includes serotypes 4a and 4 c [37,42]. 
The most predominant serotypes causing clinical infections are 
1/2a (lineage II), 1/2b and 4b (lineage I), accounting for over 
90% of cases [37]. Notably, serotype 4, belonging to lineage I, 
is frequently isolated from human infections, indicating its high 
prevalence and pathogenicity. Serotype 4b is also responsible 
for a majority of sporadic and outbreak incidents worldwide, 
further underscoring its elevated pathogenic potential. Strains 
are organized into Clonal Complexes (CCs) and singletons are 
Sequence Types (STs) with at least two allelic mismatches [43]. 
Multilocus Sequence Typing (MLST) can reconstruct ancestral 
and evolutionary relationships among L. monocytogenes isola-
tes and identify all genetic variations within amplified houseke-
eping genes, which accumulate over time are less common in 

human disease, they are frequently found in food and food en-
vironments[44]. The lineages are further classified into STs and 
CCs using Multilocus Sequence Typing (MLST). Lineage I inclu-
des the clones CC1, CC2, CC4, and CC6, which are commonly as-
sociated with human diseases and dairy products [45], whereas 
lineage II comprises the clones CC9 and CC121, which are stron-
gly linked to food and food processing environments [41,46].

The monitoring of antimicrobial resistance in zoonotic and 
commensal bacteria in food-producing animals and food is 
crucial for several reasons. It helps in understanding the de-
velopment and spread of antimicrobial resistance. By monito-
ring resistance patterns, we can identify emerging trends and 
monitoring provides relevant risk assessment data, and evalu-
ating targeted interventions [23,47]. The first antibiotic-multi-
resistant strain (chloramphenicol, erythromycin, streptomycin, 
and tetracycline) of L. monocytogenes was described in Fran-
ce in 1988. Since then, numerous resistant strains have been 
identified and isolated from both food and human samples. In 
1996, antibiotic resistance of Listeria spp. was isolated from 
food products such as  cheese and pork [25,48,49]. In respon-
se to growing antibiotic resistance in foodborne pathogens, the 
European Union introduced legislation banning the use of anti-
biotics as animal feed additives in January 2006 [25]. Multidrug 
resistance is not a common pattern among L. monocytogenes, 
however, as described is characterized by the ability to develop 
resistance to antimicrobial agents commonly used in human 
and animal health. Antimicrobial resistance can occur through 
various mechanisms, such as target gene mutations (e.g. genes 
encoding efflux pumps) and the acquisition of genetic elements 
[49]. 

There are two main routes for the transmission of antimicro-
bial resistance between food-producing animals and humans. 
The first is direct acquisition by contact, which occurs through 
interaction with food-producing animals or human carriers. A 
second involves indirect acquisition through the food chain or 
exposure to an environment with high levels of antimicrobial 
resistance contamination, such as hospitals, nosocomial acqui-
sition, manure, waste water and agriculture lands [28,50].

Genomic Analysis of L.Monocytogenes in Livestock and De-
rived Food-Products

Table 2 summarizes various studies that investigated the 
presence of L. monocytogenes in livestock and food derived 

Germany

primary 
production, 
processing 
companies, 
fresh fruit, 
frozen berries 
from super-
markets

8 Broth mi-
crodilution

Fosfomycin, 
cationic pep-
tide, lincomy-
cin, fluoroqui-
nolones

- fosX, mprF, lin, 
nor PCR

lineages 
I and II 
(62.5%)

ST1, 
ST2, 
ST6, 
ST7, 

ST21, 
ST504, 
ST1413

CC1, 
CC2, 
CC6, 
CC7, 

CC21, 
CC457, 
CC739

[61]

Fattening 
pigs and the 
slaughterhouse 
environmen

7 Broth mi-
crodilution

Clindamycin
Pirlimycin

100
100 vga(G), fosX

Bak-
Charak 

pipeline
lineage I and 

lineage II

ST5, 
ST6, 
ST7, 
ST9, 

ST18, 
ST20, 
ST37, 

ST325, 
ST412, 
ST451

CC5, 
CC6, 
CC7, 
CC9, 

CC18, 
CC20, 
CC37, 
CC31, 

CC412, 
CC11

[62]

Northern 
Italy

Food sources 
(beef, dairy, 
fish, game, 
mixed food, 
mixed meat, 
pork, and 
poultry)

416 - - - - - -

ST1ST2, 
ST3, 
ST5, 
ST9, 

ST36, 
ST427, 
ST663

CC1, 
CC2, 
CC3, 
CC5, 
CC9, 

CC36, 
CC29

[63]

Portugal Cured Raw 
Milk Cheese 8 - - - - - -

ST788, 
ST378, 

ST1, ST9, 
ST666, 
ST87

- [66]
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for detection of antimicrobial resistance and provides an over-
view of antimicrobial resistance and genomic analysis. A study 
conducted by Obaidat e Stringer [51] in Jordan analyzed 32 L. 
monocytogenes strains isolated from cattle, sheep and goats 
and observed a high levels of resistance (95%) to ampicillin, 
penicillin, clindamycin, erythromycin, quinupristin–dalfopris-
tin (88%) and streptomycin (80)%, with a multidrug-resistant 
profile. Additionaly, more than 70% of the isolates showed 
resistance to teicoplanin, linezolid, vancomycin, kanamycin, 
and tetracycline [51]. conducted a study in Morocco [53] and 
collected and analyzed 520 samples of raw  beef bovine and 
poultry meat. Two L. monocytogenes strains were isolated from 
each sample of raw bovive meat and raw poultry meat. These 
strains showed high levels of resistance to amoxicillin/clavula-
nic acid and erythromycin. This study also revealed the presen-
ce of virulence factors in L. monocytogenes strains recovered 
from the collected samples [52]. In another study conducted 
in Morocco [53], 140 raw beef samples were analyzed, and 10 
L. monocytogenes strains were isolated. The strains were hi-
ghly resistant to amoxicillin and ampicillin, while moderately 
resistant ro other antibiotics such as streptomycin, penicillin, 
erythromycin, vancomycin, tetracycline, and sulfamethoxazole/
trimethoprim. However, they were highly susceptible to imipe-
nem, amikacin, gentamicin, kanamycin, sulfamethoxazole, and 
chloramphenicol. Two separate studies on meat and dairy pro-
ducts were conducted in Spain and Australia. Escolar et al. [23] 
conducted a study in Spain and identified 7 L. monocytogenes 
strains. They showed a general tendency to be resistant or in-
termediate susceptible to eight of the nine antibiotics tested. 
The most commonly observed resistance was to clindamycin, 
with lower levels of resistance were observed to tetracycline, 
ciprofloxacin, ampicillin, penicillin, and gentamicin [23]. A study 
conducted in Brazil [54], L. monocytogenes in pig slaughterhou-
se, with resistance most commonly observed to clindamycin, 
tetracycline, ampicillin and trimethoprim-sulfamethoxazole. 
The strains exhibiting resistance to all nine antibiotics tested, 
and showed the highest levels of resistance to these antibiotics, 
were primarily found in the environment of slaughtered pigs 
[54]. Limited information is available about antibiotic resistance 
of L. monocytogenes strains isolated from poultry samples. Ho-
wever, a study conducted in Turkey [55] demonstrated low le-
vels of antibiotic resistance among the strains and resistance to 
sulfamethoxazole/trimethoprim, penicillin G, and erythromycin 
observed in 5%, 3%, and 2%, respectively [55]. In the USA [56], 
a study of antimicrobial resistance in dairy cattle and poultry 
manure, found that 100% of L. monocytogenes isolates were re-
sistant to at least one of the tested antimicrobial classes tested. 
As shown in Table 2, the observed resistance was significantly 
higher. Among the resistance genes, the prevalence of penA 
(50%), ampC (66.6%), and ermB (28%) genes was higher than 
the prevalence reported in other studies [56]. The reviewed 
studies revealed several patterns and trends related to antibio-
tic resistance and pathogenic properties of L. monocytogenes. 
Other studies were conducted in different regions of the world, 
including China [57,58], Poland [59], Central Romania [60], Ger-
many [61,62], and Northern Italy [63].  Evaluation of resistance 
to various antibiotics was confirmed and the presence of seve-
ral resistance and virulence genes was confirmed. Analysis of 
different clonal lineages of the isolates revealed that lineage II 
was the most common. Regarding STs, several STs correspon-
ding to different clonal complexes were identified. The increase 
in antibiotic resistance in L. monocytogenes highlights the need 
to monitor the food chain of all food-producing animals and li-
vestock. Widespread  use and overuses of antibiotics at various 

stages of food production can facilitate the spread of resistant 
bacteria and multi-drug resistant bacteria that are normally 
present in the animal production environments and processing 
chains [64,65].

Multiple studies have been conducted on L. monocytogenes 
strains, employing the WGS as the primary technique. A study 
conducted in Portugal by Joana Praça et. al [66], in the analysis 
of ninety-six cured raw milk cheeses from various batches in the 
Alentejo region of Portugal, the most frequent clonal complexes 
observed in L. monocytogenes typing were ST1, ST9, and ST87, 
which were detected in five isolates. Interestingly, these three 
complexes have previously been reported by Alexandra Moura 
et al. [67] and Anaïs Painset et al. [37] in studies involving clini-
cally confirmed L. monocytogenes isolates, as well as in inves-
tigations focused on ready-to-eat foods, food-processing envi-
ronments, and food samples. Moreover, in a study conducted in 
Spain [68] that identified clinical isolates associated with liste-
riosis, clonal complexes ST1 and ST87 were also identified as the 
most prevalent complexes. One study conducted in South Africa 
[69] isolated six L. monocytogenes strains from a ready-to-eat 
meat product, especially biltong and polony. Four distinct se-
quence types were identified: ST1, ST121, ST204, and ST876. It 
was observed that ST1, which was found in 50% of the isolates, 
has been reported to have a global distribution [69]. Regarding 
the ST found, ST1 is known to be commonly found in clinical 
and food isolates across different regions worldwide [70]. ST121 
and ST204, on the other hand, are associated with species ty-
pically found in food-processing environments. The particular 
sequence types possess the capacity to endure and persist for 
extended durations, ranging from months to years, within food-
processing environments, thereby continuing to contaminate 
food products [71,72]. During a study carried out in South Afri-
ca [73], L. monocytogenes was isolated from various stages of 
the meat value chain, including different types of meat, meat 
products, and environmental samples. WGS was employed for 
characterization purposes and the MLST analysis of the isola-
ted strains revealed the presence of 20 distinct sequence types, 
primarily belonging to lineages I and II. Among the most pre-
valent STs identified were ST204, ST321, ST1, ST2 and ST9. It is 
worth noting that ST204 has been previously associated with 
strains causing food contamination in meat-related products in 
studies conducted in France [74] and Australia [75]. However, 
ST204 has been reported and isolates from various ecological 
niches, including food processing facilities, non-clinical isolates, 
and ready-to-eat products. On the other hand, ST1 and ST2 are 
recognized as the predominant sequence types strongly asso-
ciated with food contamination and responsible for infections 
in both humans and animals on a global scale [73]. Some STs 
(ST2, ST3, ST5, ST9, ST155 and ST204) were found to exhibit 
mechanisms enabling their survival in animal production en-
vironments while also contributing to the persistence of food 
contamination [73,76]. A study conducted in Latvia [16] exami-
ned the genetic diversity of L. monocytogenes in cattle farms by 
analyzing 521 samples collected from 27 cattle farms between 
2019 and 2020. Molecular serotyping, Clonal Complexes (CCs), 
and genetic diversity of the L. monocytogenes isolates were 
investigated. The results revealed that the majority of the se-
quenced L. monocytogenes isolates belonged to serogroup IIa, 
followed by IVb and IIc. Serogroup IIa was detected in various 
sources, including soil, feed, water, and animal feces, while IVb 
was found in water and feces, and IIc was only present in feces. 
Fifteen ST and corresponding CC were identified among the L. 
monocytogenes isolates. The most abundant STs and CCs were 
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ST37 (CC37), ST451 (CC11), and ST18 (CC37). In the cattle farms, 
the predominant STs and CCs were ST18 (CC18), ST37 (CC37), 
and ST8 (CC8). ST37 was significantly associated with soil and 
was exclusively observed among soil isolates from for different 
farms and was linked to ruminants, ruminant farms, and wildlife 
environments [16,77]. Clonal complexes, CC8, CC11 and CC9, 
were associated with food and persistence in food-processing 
environments and had been implicated in listeriosis outbreaks 
[78,79]. CC37 and CC18 clones suggested adaptation and persis-
tence in the cattle farm environment [16].

The mentioned studies provide valuable insights into the 
genetic diversity, prevalence, and distribution of L. monocyto-
genes isolates in various settings and geographic regions. The 
study by Joana Praça et. al [66] in Portugal observed common 
clonal complexes ST1, ST9, and ST87 in L. monocytogenes isola-
tes from raw milk cheeses, which were previously reported in 
clinical and food related studies. Similarly, in Spain, the same 
clonal complexes (ST1 and ST87) were found to be prevalent 
among clinical isolates associated with listeriosis. In South Afri-
ca, multiple studies reported the presence of distinct sequence 
types (ST1, ST121, ST204, ST876) in L. monocytogenes strains 
isolated from ready-to-eat meat products and different stages 
of the meat value chain. 

ST1 was recognized as globally distributed and commonly 
found in clinical and food isolates. ST121 and ST204 were asso-
ciated with species prevalent in food-processing environments, 
capable of persisting and contaminating food products. Fur-
thermore, the study conducted in Latvia, ST37, ST451, and ST18 
were frequently identified and the ST8, ST11, ST9, and ST37 
were associated with food, persistence in food-processing en-
vironments, and ruminant farms. The findings collectively indi-
cate the presence of specific ST and CC that exhibit adaptability, 
persistence, and potential for food contamination in different 
ecological niches and highlight the significance of L. monocyto-
genes in various contexts, including food products, clinical in-
fections, food-processing environments, and animal production 
settings.

Conclusions

The extensive use of antibiotics in human medicine, veteri-
nary medicine, and agriculture has contributed significantly to 
the emergence and spread of antibiotics resistance. The use of 
antimicrobials in livestock, particularly for growth promotion 
purposes, has been a major concern. The presence of antibio-
tic resistance in food-producing animals, such as cattle, poultry, 
swines and rabbits, has been well-documented and antibiotics 
from various classes, including β-lactams, tetracyclines, amino-
glycosides, quinolones, and macrolides, are commonly used in 
food animal production. These antibiotics can lead to the disse-
mination of antibiotic-resistant bacteria in fresh meat, milk, and 
dairy products, potentially acting as reservoirs for resistant ge-
nes that can be transferred to humans. Studies on L. monocyto-
genes have shown a high prevalence of multidrug resistance 
strains and exhibit resistance to antibiotics such as ampicillin, 
penicillin, clindamycin, erythromycin, and tetracycline. To miti-
gate the spread of antibiotic resistance and ensure food safety, 
there is a need for surveillance and monitoring of antibiotic use 
in food-producing animals and the food chain. Responsible an-
tibiotic stewardship practices, strict adherence to regulations, 
and promoting alternatives to antibiotics in animal agriculture 
are crucial steps in combating antibiotic resistance. Continued 
research, including genomic studies using WGS, will play a sig-
nificant role in understanding and addressing the challenges 

posed by antibiotic resistance in foodborne pathogens like L. 
monocytogenes.
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