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Abstract

Klebsiella pneumoniae is widely recognized as an opportunistic pathogen 
in both hospital and community settings. It is a key member of the ESKAPE 
group, which comprises priority microorganisms of major concern owing to 
their antibiotic resistance. The resistance of K. pneumoniae, particularly related 
to Extended-Spectrum β-Lactamases (ESBLs), poses a significant global 
public health challenge. The combination of its Multidrug Resistance (MDR) 
phenotype and various pathogenicity factors increases its potential to cause 
severe clinical infections. Biofilm formation was assessed via a semiquantitative 
microtiter technique. We employed various bioinformatics tools to analyze 
the Antimicrobial Resistance (AMR), virulence factors, plasmid replicons, and 
genomic diversity of the CRKP isolates. Overall, among the 24 K. pneumoniae 
isolates, most produced strong biofilms (n = 21), with some exhibiting moderate 
(n = 1) or weak (n = 2) biofilm production. An alarming level of resistance to 
multiple classes of antibiotics was correlated with the presence of various 
resistance genes, including those for β-lactams (blaOXA-48, blaOXA-181, blaCTX-M15, 
blaTEM and blaSHV), aminoglycosides (aph(6)-Id, aac(3)-IIe, aadA2, ant(3’’)-IIa, 
aph(3’)-Ia and aac(6’)-Ib-cr), and quinolones (qnrA, qnrB, qnrS, CRP, and emrR). 
Various efflux pumps, such as KpnGH, oqxAB, acrAB, acrD, and KpnEF, are 
ubiquitously distributed across MDR K. pneumoniae strains. Several virulence-
associated genes encoding type 1 fimbriae (fimH), type 3 fimbriae (mrkA), efflux 
pumps (acrAB, oqxAB), enterobactin (entA, entB, fepC), and yersiniabactin 
(irp1, irp2, ytbA, ybtE, ybtP, ybtQ, ytbT, ytbU, ytbX) have been identified. 
Genetically, the isolates presented high diversity, with 18 Sequence Types (STs) 
and an average of 70.1% accessory genes. On the basis of SNP distance and 
pairwise ANI analysis, the majority of K. pneumoniae isolates were grouped into 
one clade. The high plasticity of K. pneumoniae in the acquisition of an MDR 
phenotype, combined with the phenotypic and genotypic factors described in 
this report, underscores the challenges in achieving effective clinical therapy 
with the available antibiotics. The findings also emphasize the critical need for 
the surveillance of multidrug-resistant pathogens in clinical settings in Senegal, 
as well as the need to evaluate their prevalence, propagation, and impact on 
patient health outcomes.
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Introduction
Klebsiella pneumoniae is an opportunistic pathogen responsible 

for a broad spectrum of Healthcare-Associated Infections (HAIs), 
predominantly affecting immunocompromised individuals and 
is responsible for diverse diseases syndromes such as pneumonia, 
bacteremia, urinary tract infections, wound or soft tissue infections, 
and liver abscesses [1]. Klebsiella pneumoniae ranks among the 
priority pathogens categorized within the ESKAPE-E group and is 
classified as a critical organism on the WHO priority pathogens list 
for the research and development of novel antibiotics [2]. Recent 
studies have highlighted this organism as one of the top five pathogens 
contributing to global mortality, regardless of its susceptibility to 

antibiotics [3]. In the USA, K. pneumoniae has been identified as 
a predominant cause of HAIs, accounting for an estimated 8.0% of 
all HAIs, whereas in the UK, it has been implicated in 4.7%–6.0% 
of all bacterial infections [4]. Sparse data from sub-Saharan Africa 
(sSA) suggest that K. pneumoniae may be responsible for higher 
proportions of HAIs in this region than in industrialized countries, 
particularly among children under 5 years of age [5-7]. In South 
Africa, K. pneumoniae caused 22.0% of HAI bacteremia cases among 
neonates, whereas in Kenya, it was estimated to be responsible for 
20.0% of HAI bacteremia cases [8,9]. The emergence of Multidrug-
Resistant (MDR) strains in K. pneumoniae is largely attributed to 
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the acquisition of Antimicrobial Resistance (AMR) genes, which 
are commonly found among globally disseminated clones and often 
contribute to hospital outbreaks. Presently, K. pneumoniae resistance 
is predominantly associated with molecules such as third-generation 
cephalosporins and carbapenems. Various Extended-Spectrum 
β-Lactamases (ESBLs) responsible for resistance to third-generation 
cephalosporins have been identified in Senegal, including those from 
major blaCTX-M groups such as blaCTX-M15, the most predominant [10-
12]; blaCTX-M109 [13]; blaSHV-derived enzymes (blaSHV-2 and blaSHV-12) 
[14]; and carbapenemases conferring resistance to carbapenems 
(e.g., blaKPC-2, blaNDM and blaOXA-48) [15,16]. Additionally, resistance to 
fluoroquinolones, which is primarily mediated by Plasmid-Mediated 
Quinolone Resistance (PMQR) mechanisms [17,18], as well as 
modification enzymes conferring resistance to aminoglycosides [17], 
has been reported. Owing to the high adaptability of this pathogen, 
ESBLs, carbapenemases, PMQRs, and aminoglycoside-modifying 
enzymes may coexist in the same clinical strain, posing challenges for 
treatment options for affected patients [19].

Apart from AMR, the propensity of K. pneumoniae to cause 
severe infections is linked to virulence factors, biofilm formation 
and sequence types [20,21]. The determination of sequence types 
and clonal distributions is important, as certain clones, such as ST11 
and ST258 or ST14, ST15, ST17, and ST37, are widely acknowledged 
for carrying MDR traits and have been linked to global outbreaks 
in human populations in recent years [22]. Virulence-associated 
genes, encompassing both fimbriae and nonfimbrial adhesins, iron-
scavenging systems, and surface polysaccharides, play pivotal roles in 
the pathogenicity of K. pneumoniae. They are responsible for processes 
such as colonization, invasion, and pathogenicity of the strains [23,24]. 
One of the key virulence traits of K. pneumoniae is its ability to form 
biofilms, which are composed of bacteria enclosed within a self-
generated extracellular matrix adhering to either living or nonliving 
surfaces [25]. This matrix is composed of proteins, exopolysaccharides, 
DNA, and lipopeptides [26]. Also, several virulence factors, including 
capsule polysaccharides, lipopolysaccharides, type 1 and type 3 
fimbriae, outer membrane proteins, and mechanisms for iron 
acquisition and nitrogen utilization enable K. pneumoniae to survive, 
evade the immune system during infection, and contribute to biofilm 
formation [27,28].

In Senegal, there is a lack of whole-genome studies on AMR, which 
are essential for better understanding the mechanisms of resistance, 
virulence, and clonal distribution of isolates. This knowledge is 
crucial to strengthening AMR surveillance and evaluating available 
therapeutic options. This, the aim of this study was to give first insight 
of biofilm formation, resistome and virome among MDR-producing 
K. pneumoniae strains isolated from HAIs in Senegal.

Materials and Methods
Sample Collection

MDR K. pneumoniae strains were collected and processed from 
Hospital Aristide Le Dantec and the Children’s Hospital Center Albert 
Royer of Fann Microbiology Laboratory from a previous study [29]. 
Bacterial strains resistant to at least three different antibiotic classes 
were classified as MDR, while those susceptible to only one or two 
antibiotic classes were categorized as XDR respectively, as previously 

described [30]. Infections were considered hospital-acquired if they 
developed at least 48 hours after hospital admission. Isolates were 
collected between January 2018 to February 2021. Antimicrobial 
susceptibility was evaluated by measuring strain growth zone 
diameters using the Kirby-Bauer method according to CA-SFM/
EUCAST guidelines (version 2023) during a previous study [29]. The 
phenotypic resistance of the strains is given in Table 1 supp.

Hypermucoviscosity Characterization and Biofilm 
Formation Assay

The Hypermucoviscous (HM) phenotype was assessed via 
the "string test," following established protocols [31]. Klebsiella 
pneumoniae cultures were incubated on agar plates overnight at 37°C. 
A colony from the plate was subsequently stretched using a loop. If 
a viscous string formed, exceeding a length of 5 mm, the strain was 
classified as exhibiting the HM phenotype.

Biofilm production of MDR K. pneumoniae was assessed via a 
crystal violet staining assay. Briefly, the strains were grown overnight 
in Luria Bertani (LB) broth at 37°C under static conditions. Initially, 
20 µL of the 0.5 McFarland bacterial standard and 180 µL of Luria–
Bertani broth were inoculated into each well of a 96-well microplate, 
with six wells per strain, followed by incubation at 37°C for 24 hours. 
The Luria–Bertani broth was subsequently aspirated, and the wells 
were washed three times with Phosphate-Buffered Saline (PBS). The 
plates were stained with a 1% crystal violet dye solution (150 µL/well) 
for 15 minutes. After staining, the wells were washed three times with 
sterile water to remove unbound dye and then air-dried. The stained 
biofilms were solubilized with 150 μL of 100% ethanol for 10 minutes, 
and quantification was performed by measuring the optical density 
at 570 nm (OD575). Each experiment was conducted in triplicate. 
The OD of the control wells with only media was used as the cutoff 
value (ODc). Using the ODc, the results of the biofilm formation 
assay were interpreted as follows: non biofilm producer (OD < ODc), 
weak producer (ODc < OD < 2ODc), moderate producer (2ODc < 
OD < 4ODc), and strong producer (4ODc < OD) [32]. Graphs and 
statistical analyses were performed via GraphPad Prism 9 (GraphPad 
Software, San Diego, CA, USA).

DNA Extraction and Whole-Genome Sequencing

The genomic DNA of the K. pneumoniae isolates was extracted 
via the PureLinkTM Genomic DNA Mini Kit (Thermo Fisher 
Scientific) according to the manufacturer’s instructions. Nucleic acid 
concentrations were measured via a Nanodrop spectrophotometer, 
and samples were adjusted to concentrations between 100 and 300 
ng/µL. Whole-genome sequencing (WGS) was conducted via the 
NextSeq platform Illumina®. Dual-index sequencing libraries were 
prepared via the NEBNext® library preparation kit, Multiplex Oligos 
for Illumina® (NEB, Boston, MA, USA), and pooled. Sequencing was 
performed on an Illumina® Next 500 cartridge (2 × 150 bp).

Genomic Analysis

Genome assembly, annotation and sequence analysis: The 
quality of reads was conducted using FastQC [33]. The adaptor 
trimming was executed with fastp v0.23.2 [34] and the genomes were 
assembled from draft genomes with SPAdes v3.15.5 [35]. Finally, 
annotation was performed using Prokka [36]. AMR genes, virulence 
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genes and plasmid replicons were identified with the Comprehensive 
Antibiotic Resistance Database (CARD) [37], Virulence Factor 
Database (VFDB) [38], and PlasmidFinder [39], respectively, via 
Abricate v1.0.1 [40]. The approach proposed by Diancourt et al. [41] 
was employed for in silico Multilocus Sequence Typing (MLST), 
which involves evaluating allelic diversity across seven housekeeping 
genes (gapa, infb, mdh, pgi, phoe, rpob, and tonb). Whole-Genome 
Sequencing (WGS) data were utilized to identify the different 
sequence types (STs) and to determine the MLST profiles of the K. 
pneumoniae isolates via MLST v2.23.0 [42,43]. The K and O serotypes 
were determined via Kaptive 2.0 [44].

Phylogenomic analysis: To investigate the genetic diversity of 
the 24 MDR K. pneumoniae isolates in this study, pairwise Single 
Nucleotide Polymorphism (SNP) distances and pairwise Average 
Nucleotide Identity (ANI) values were analyzed via snp-dists v0.8.2 
(https://github.com/tseemann/snp-dists) and FastANI v1.32 [45], 
respectively. Core genome alignment was performed via Roary [46] 
with a 95% minimum identity for BLASTX and a 99% core definition 
threshold. SNPs for each isolate were called from core genes using SNP 
sites v2.4.1 [47]. The phylogenetic tree was subsequently constructed 
employing gubbins [48], with the RAXML option for tree builder, and 
branch support was subsequently assessed using the neighbor-joining 
method with 500 bootstrap replicates. The resulting tree was visualized 
using Geneious [49]. The number of pangenomes was obtained, and 
a phylogenetic tree was visualized against a presence and absence 
matrix of the pangenomes via the roary_plots script (https://github.
com/sanger-pathogens/Roary/tree/master/contrib/roary_plots).

Results
String Test and Biofilm Formation

The string test was negative, and none of the isolates were 
considered hypermucoviscous. Biofilm formation was detected in all 
strains, the majority of which were categorized as strong producers (n 
= 21), moderate producers (n = 1), or weak producers (n = 2) (Figure 
1).

Resistome, Virulome and Plasmid Analysis

For the resistome analysis, we identified carbapenem resistance 
genes, oxacillinases or class D β-lactamases, with blaOXA-48 found in 
2 strains and its variant blaOXA-181 in 3 strains. For the ESBL genes, 
blaCTX-M15 was detected in 22 out of 24 strains. The blaOXA-1 ESBL gene 
was detected in 15 out of 24 strains. Multiple strains simultaneously 
harbored ESBL genes such as blaTEM and blaSHV. Additionally, the ESBL 
gene blaPKP-A-6 was detected in one strain. Tetracycline resistance genes 
(tetA) and macrolide resistance genes (mphA) were detected in 14 and 
2 strains, respectively. Various aminoglycoside resistance genes were 
also found: aph(6)-Id (20 strains), aac(3)-IIe (15 strains), aadA2 (2 
strains), ant(3’’)-Iia (2 strains) and pph(3’)-Ia (2 strains). The aac(6’)-
Ib-cr gene, which confers resistance to both aminoglycoside and 
fluoroquinolones, was found in 15 out of 24 strains. Other important 
resistance determinants, such as quinolone resistance genes (qnrA 
(1/24), qnrB (14/24), qnrS (8/24), crp (24/24), and emrR (24/24)), 
efflux pump genes (oqxAB (23/24)), macrolide resistance genes 
(mphA (2/24)), trimethoprim resistance genes (dfrA12 (2/24), dfrA14 
(17/24), dfrA15 (2/24), and cpxA (24/24)), sulfonamide resistance 
genes (sul1 (3/24) and sul2 23/24)), phenicol resistance genes (catI 
(4/24) and catII (1/24)), and fosfomycin resistance genes (fosA5 (3/24) 
and fosA6 (21/24)), were detected (Figure 2A, and Table S3).

Various types of efflux pumps are ubiquitously distributed across 
MDR K. pneumoniae strains, including major facilitator superfamily 
(MFS) antibiotic efflux pump genes (KpnGH), Resistance-Nodulation-
cell Division (RND) antibiotic efflux pump genes (oqxAB, acrAB, and 
acrD (22 out of 24 strains)), and small multidrug resistance (SMR) 
antibiotic efflux pump genes (KpnEF). The porin OmpK37, which 
confers reduced susceptibility to β-lactams and carbapenems, was 
also detected in all the strains (Figure 2A).

Regarding virulence genes, those related to adherence, specifically 
the E. coli Common Pilus (ECP) genes (ecpA, ecpB, ecpC, ecpD, ecpE, 
and ecpR), type 1 (fimH), and outer membrane protein A (ompA), 
were present in all strains. Type 3 fimbriae (mrkA) were present in 23 

Figure 1: Biofilm formation of the 24 K. pneumoniae strains studied. The 
graphic shows the values (mean and standard deviation) of the optical 
density at 575 nm (OD575 nm) of crystal violet obtained for each strain. The 
dashed lines at 0.1, 0.21, and 0.42 represent the threshold value for each 
biofilm capability formation category: no biofilm Producer (NO), Weak (W), 
and Moderate (M) biofilm, respectively. Values above 0.42 were considered 
Strong (S) biofilm formation.

Figure 2: Distribution of A) Resistance genes. The white square indicates 
that the gene was not detected. B) Virulence genes of interest are shown in 
gray. ECP: E. coli common pilus. C) Plasmid replicons of 24 K. pneumoniae 
strains isolated from HAIs in Dakar.

https://github.com/sanger-pathogens/Roary/tree/master/contrib/roary_plots
https://github.com/sanger-pathogens/Roary/tree/master/contrib/roary_plots
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out of 24 strains. The siderophore genes entB and fepC were also found 
in all strains, whereas entA, irp1, irp2, ytbA, ybtE, ybtP, ybtQ, ytbT, 
ytbU, and ytbX were present in some strains (Figure 2B and Table S4).

Fourteen plasmid replicons were detected in the studied isolates. 
They comprised five replicons from the IncF group, four from the 
Col group, and one each from the IncC, IncH, IncL, IncR, and IncX 
groups. Up to 6 plasmid replicons were found within the isolates. The 
IncFIB(K)_1_Kpn3 (n=20) and Col440I_1 (n=12) plasmid replicons 
were the most common in the K. pneumoniae isolates analyzed in 
this study, followed by IncHI1B_1_Pndm-MAR, IncFIB(Mar)_1_
Pndm-Mar, and IncR_1, which were detected in 8, 6 and 4 isolates, 
respectively (Figure 2C and Table S5).

Genomic Diversity and Phylogenetic Tree

A matrix of pairwise SNP distances and pairwise ANI values is 
illustrated in Figure 3. The 23 K. pneumoniae isolates are grouped 
into one clade, with KP8 being relatively distant. The number of core 
SNPs within the clade varied from 42-882. Additionally, ANI values 
of 98.92-100% were found among all pairs of isolates, except for KP8, 
which presented an ANI of 93.83% compared with the other isolates. 
We identified 18 distinct STs (ST6, ST13, ST15, ST17, ST20, ST37, 
ST39, ST70, ST234, ST307, ST392, ST502, ST584, ST867, ST870, 
ST967, ST1077, and ST1243) among the 24 strains. The phylo-genetic 
tree analysis delineated separate clades on the basis of these STs 
(Figure 4 and Table S2). The comparison revealed 19,993 pan genes 
consisting of 5,988 (29.9%) core and 14,005 (70.1%) accessory genes. 
Among the accessory genes, 10,406 (74.3%) encoded hypothetical 
proteins (Figure 5 and Table S6).

Discussion
Gram-negative bacilli infections pose significant threats to 

hospitalized patients, with the potential to become life-threatening 
[50,51]. Klebsiella pneumoniae, an opportunistic pathogen, is 
associated with both community-acquired and nosocomial 
infections, causing pneumonia, abscesses, bacteremia, and urinary 
tract infections [52]. Its rapid acquisition of antimicrobial resistance 

Figure 3: Matrix of pairwise Single Nucleotide Polymorphism (SNP) distances and pairwise Average Nucleotide Identity (ANI) values among MDR Klebsiella 
pneumoniae clinical isolates.

Figure 4: Phylogenetic tree of MDR Klebsiella pneumoniae clinical isolates 
based on single nucleotide polymorphisms.

Figure 5: The single nucleotide polymorphism-based phylogenetic tree 
is shown against the pangenome matrix of MDR Klebsiella pneumoniae 
genomes compared with other published genomes.
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has escalated K. pneumoniae into a global concern, prompting efforts 
to curb the spread of multidrug-resistant strains [53]. A primary 
advantage of WGS lies in its ability to characterize the genomic 
content of clinically relevant bacteria, linking them to antimicrobial 
resistance and virulence-associated phenotypes. This enhances our 
understanding of their transmission within healthcare settings, 
facilitates accurate diagnostics, and enables prompt therapeutic 
interventions. This study aimed to characterize K. pneumoniae 
isolates from HAIs that occurred between 2018 and 2020 in Dakar, 
Senegal. Antibiotic exposure is a key driver of antimicrobial 
resistance, influenced by factors such as antibiotic use in healthcare, 
communities, agriculture, and the environment. Overuse, often due 
to easy access without prescription, contributes to resistance. In 
healthcare settings, prolonged and intensive antibiotic use is a major 
cause of the spread of resistant healthcare associated infections [54]. 
All Multidrug Resistance (MDR) K. pneumoniae strains in our study 
exhibited high resistance rates to commonly prescribed antibiotics, 
either individually or in combination. The observed resistance 
rates were as follows: β-lactams (100%), aminoglycosides (83.3%), 
fluoroquinolones (91.6%), cyclins (100%), fosfomycin (33.3%), and 
trimethoprim-sulfamethoxazole (91.6%). This finding is consistent 
with previous studies by Nirwati et al. [55] and Moini et al. [56], 
which reported that MDR K. pneumoniae isolates exhibited high 
levels of resistance to penicillins, cephalosporins, fluoroquinolones, 
aminoglycosides, and sulfonamides. A global meta-analysis of 47 
studies estimated the prevalence of antibiotic resistance in healthcare-
associated MDR K. pneumoniae. According to this meta-analysis, the 
resistance rates were as follows: β-lactams (91.5%), aminoglycosides 
(85.1%), quinolones (87.2%), cyclins (34%), sulfonamides (51%), 
polymyxins (14.9%), and other classes of antibiotics (38.3%) [57].

All of the strains were ESLB-producers and blaCTX-M15 was found 
as the main ESBL gene (22 out of 24, 91.6%) in our K. pneumoniae 
isolates confirms that CTX-M-15 is currently the most widely 
distributed CTX-M enzyme in Senegal [58,59] and worldwide [60]. 
A study conducted in medical biology laboratory at Institut Pasteur 
Dakar showed that a majority of ESBL-producing E. coli strains 
were sensitive to cefoxitin and piperacillin-tazobactam suggesting 
that these antibiotics can be used as alternatives to carbapenems in 
the treatment of ESBL-secreting Enterobacteriaceae infection [58]. 
Additionally, the presence of various ESBL genes, such as blaTEM (18 out 
of 24, 75%) and SHV (23 out of 24, 95.8%), underscores the potential 
role of K. pneumoniae as a reservoir for beta-lactam and non-beta-
lactam resistance determinants, posing major concerns in countries 
with inadequate antibiotic resistance surveillance, prevention, and 
containment measures [61].

Among them, 8 K. pneumoniae strains were resistant to 
carbapenems, with the blaOXA-48 gene detected in 2 strains and blaOXA-181 
in 3 strains. For the remaining carbapenem-resistant strains, the 
presence of various efflux pumps (ramA-acrAB) and a porin system 
(OmpK37) was observed, which can decrease susceptibility to beta-
lactam antibiotics, including carbapenems [62,63]. The widespread 
of multidrug resistance mechanisms of K. pneumoniae, especially 
the global spread of carbapenemases, combined with the rapid 
increase in carbapenem consumption in LMICs are driving increased 
carbapenem resistance especially in the ICU where they are the 
leading causes of invasive HAIs [64].

In nearly all the isolates investigated, genes associated with 
resistance to aminoglycoside, trimethoprim, sulfonamide, 
tetracycline, and chloramphenicol were found, which correlates with 
antibiotic susceptibility results.

In addition to AMR genes, our K. pneumoniae isolates harbored 
several virulence-associated genes, including those encoding type 
1 fimbriae (fimH), type 3 fimbriae (mrkA), efflux pumps (acrAB, 
oqxAB), enterobactins (entA, entB, fepC), and yersiniabactin (irp1, 
irp2, ytbA, ybtE, ybtP, ybtQ, ytbT, ytbU, ytbX). Previous studies have 
demonstrated a significant association between mrkA and biofilm 
formation in K. pneumoniae [65,66], while fimH has been strongly 
linked to the MDR phenotype [65,67].

Biofilms are microbial communities that are encased in a matrix 
that maintain bacterial structural integrity, can attach to both biotic 
and abiotic surfaces and protect bacterial cells against antibiotics and 
the host’s immune system [68]. The majority of the strains exhibited 
a strong biofilm formation phenotype (22/24, 91.6%) and several 
studies have reported strong biofilm production in the majority 
of clinical K. pneumoniae strains [55,69,70]. In our study, biofilm 
production correlates with the presence of type 1 (fimH) and type 3 
fimbriae (mrkA), both of which are crucial for adhesion to host cells 
[71]. These fimbriae also play a significant role in biofilm formation 
across many species [72]. fimH has been implicated in adhesion to 
epithelial cells, colonization, biofilm formation, and immune evasion 
[73], whereas mrkA is crucial for binding to host cells and extracellular 
matrix proteins, promoting biofilm formation on both biotic and 
abiotic surfaces [74]. The Minimum Inhibitory Concentrations 
(MICs) of conventional antibiotics for biofilm bacteria are 100–1000 
times higher than those for planktonic bacteria [75] and biofilm-
producing ability have been shown to correlate with extensively drug 
resistant (XDR) K. pneumoniae antibiotic resistance profile [76]. This 
inherent tolerance to antimicrobial agents, can then lead to severe, 
persistent infections that are particularly difficult to treat particularly 
in hospital settings [77].

The overexpression of the multidrug efflux pump acrAB in gram-
negative bacteria not only confers resistance against antibiotics such 
as fluoroquinolones, β-lactams, and tigecycline but also provides 
virulence factors, such as resistance to antimicrobial peptides 
produced by the innate immune system in the lungs [78,79]. The 
oqxAB multidrug efflux pump mediates resistance in various 
bacteria, especially K. pneumoniae and E. coli, and can be found 
on both chromosomes and plasmids [80,81]. Previous studies have 
demonstrated that oqxAB confers resistance to fluoroquinolone, 
olaquindox, tigecycline, nalidixic acid, and chloramphenicol [80-83]. 
Siderophores such as enterobactin and yersiniabactin facilitate iron 
uptake and protect microorganisms against oxidative stress from host 
innate immune cells, thereby promoting infection [84,85].

The persistence of carbapenem resistance genes is driven 
primarily by the clonal dissemination of isolates and the spread of 
these genes via conjugative or mobile plasmids [86]. In this study, we 
identified five types of Inc. plasmids known to facilitate the spread 
of the blaOXA-48 and blaNDM genes in K. pneumoniae isolates. All the 
detected IncL plasmids harbored blaOXA-48 resistance genes, while two 
plasmid replicons carrying blaNDM genes were identified. Although 
these particular plasmids did not carry the blaNDM gene, their presence 
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suggests the potential for these strains to acquire it. IncFIB and Col 
were the most frequently detected plasmids. The IncFIB gene is a 
conjugative plasmid previously associated with the dissemination of 
the blaTEM gene in E. coli isolates from Africa and is responsible for 
the spread of the blaNDM-1, blaSHV-12, blaCTX-M15, and blaOXA-1 genes in K. 
pneumoniae in Europe [87,88]. This study is the first to report these 
plasmid replicons in clinical K. pneumoniae isolates from Senegal. 
The detection of these multiple plasmid profiles in our strains raises 
concerns about the rapid spread of antibiotic resistance in hospital 
settings, with the likelihood of these plasmid types becoming more 
prevalent in the future.

Among the 24 strains, 18 different sequence types were identified, 
indicating significant diversity among the clinical HAIs in Dakar. The 
variation in ST distribution across different study locations highlights 
the genetic diversity of this pathogen, with majority of the STs being 
widely dispersed [89,90]. Additionally, our analysis of the genetic 
relatedness of the strains revealed moderate pairwise SNP distances in 
pairs of different STs, whereas > 1000 SNPs were identified in ST1077 
compared with the other STs. The commonly applied 

ANI threshold of 95-96% supports species assignments [91]. Our 
study revealed that all MDR strains shared greater than 97% ANI, 
suggesting that they were closely related strains of K. pneumoniae 
with similar gene presence/absence patterns [92]. However, KP8 
(ST1077) shared less than 94% ANI with other K. pneumoniae 
isolates, confirming that it is a relatively distinct ST from its closest 
phylogenetic neighbors. K. pneumoniae ST1077 is closely related 
to ST1224 that was isolated from dairy products and chicken meat, 
respectively, in libya and Western Algeria, suggesting that this 
Klebsiella isolate is not host-specific and could be easily transmitted 
to humans from food animals and their products [93,94]. Pangenome 
analysis revealed substantial diversity, with a high percentage of 
accessory genes (70.1%) and a significant proportion of hypothetical 
proteins (74.3%) among these accessory genes

K. pneumoniae is thought to possess an open pangenome due to 
its ubiquity across diverse environments, including mammalian guts, 
soils, and surfaces, where it can potentially exchange genetic material 
with other bacterial species [95]. These findings suggest the broad 
diversity, widespread dissemination, and rapid adaptive evolution 
potential of MDR clinical K. pneumoniae strains in Senegal.

Conclusions
In this study, we present genomic insights into MDR K. 

pneumoniae clinical isolates from tertiary university hospitals in 
Dakar. These isolates exhibit strong biofilm formation ability, which 
could contribute to their persistence in hospital environments. They 
also belong to various sequence types and carry multiple antimicrobial 
resistance genes, virulence genes, and plasmid replicons. Through 
analysis of SNPs, ANI, and phylogenetic data, the isolates were found 
to be primarily clustered into a single major clade. Our findings 
elucidate the genomic characteristics and pathogenic traits of these 
clinical isolates. Pangenome analysis revealed significant genomic 
plasticity, suggesting the potential for the evolution and dissemination 
of these pathogens. We recommend search for alternative 
antibiotic treatment options, especially for carbapenem-resistant 

Enterobacteriaceae among clinicals isolates in Senegal, as well as 
novel therapeutic approaches such as bacteriophages for difficult-to-
treat and biofilm-associated infections. We also advocate reinforcing 
AMR surveillance, implementing antimicrobial stewardship policies, 
and enhancing infection control measures in hospitals to reduce the 
selective pressure driving the emergence and spread of MDR strains.
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