
Citation: Devia G, Balasundaramb CH and Ramasamyc H. Inhibition of Macrophage Activity and Expression 
Profile of IL Genes in Goldfish after Challenge and Immunized with Aeromonas hydrophila. J Bacteriol Mycol. 
2019; 6(6): 1119.

J Bacteriol Mycol - Volume 6 Issue 6 - 2019
ISSN : 2471-0172 | www.austinpublishinggroup.com 
Ramasamyc et al. © All rights are reserved

Journal of Bacteriology and Mycology
Open Access

Research Article

Inhibition of Macrophage Activity and Expression Profile 
of IL Genes in Goldfish after Challenge and Immunized 
with Aeromonas hydrophila
Devia G1, Balasundaramb CH2 and Ramasamyc 
H3*
1Department of Zoology, Nehru Memorial College, 
Puthanampatti 621 007, Tamil Nadu, India
2Department of Herbal and Environmental Science, Tamil 
University, Thanjavur 613 005, Tamil Nadu, India
3Department of Zoology, Pachaiyappa’s College for Men, 
Kanchipuram - 631 501, Tamil Nadu, India

*Corresponding author: Ramasamyc H, Department 
of Zoology, Pachaiyappa’s College for Men, Kanchipuram 
- 631 501, Tamil Nadu, India

Received: November 27, 2019; Accepted: December 
26, 2019; Published: December 31, 2019

Abstract

We investigate and characterized the macrophage activating and deactivating 
cytokines in mammalian systems about these immunoregulatory molecules in 
fish. We partially purified Macrophage Deactivating Factor (MDF) from mitogen-
induced goldfish kidney leukocytes using gel permeation and chromatofocusing 
fast performance liquid chromatography (GP-FPLC and C-FPLC). The pre-
treated macrophages for 6 or 24 h with MDF before activation with Macrophage 
Activating Factors (MAF) and/or bacterial Lipopolysaccharide (LPS) exhibited 
a down-regulation in their NO response. However, treated with MDF on 24 h 
did not activation with MAF and LPS. The MDF treatment is impaired the NO 
response of goldfish macrophages infected with the mammalian protozoan 
parasite Leishmania major. Therefore, the present results suggest that MDF 
exhibits its inhibitory effect downstream of the converging intracellular pathways 
induced by LPS and/or L. major. In addition to investigate differential constitutive 
expression of IL-1β1, IL-1β2 and IL-6 genes in kidney, intestine, and spleen of 
goldfish (Carassius auratus) after challenge and immunization with Aeromonas 
hydrophila using real-time PCR analysis. All the tested interleukin gene mRNA 
expression levels higher in kidney, intestine, and spleen fish were injected with 
heat-killed or formalin-killed vaccines. However, most of the tissues a modest 
down-regulation in expressions of infected untreated fish. Therefore, our results 
indicate that vaccines treated fish up-regulation in expressions in tissues could 
be central regulatory and effector cytokine of inflammatory and antimicrobial 
responses.

Keywords: Aeromonas hydrophila; Carassius auratus; Macrophage 
activity; Interleukin genes; Vaccines

Introduction
In fish, many interleukins e.g. IL-1 [1], IL-2 [2], IL-6 [3], IL-8 [4], 

IL-10 [5], IL-11 [6], type 1 and type 2 interferons [7], lymphotoxin 
β [8] have been identified and cloned. Recently, IL-1β [9] have been 
cloned and sequenced in rainbow trout and recombinant proteins 
produced to study their respective functions [10]. IL-1β is a pro-
inflammatory cytokine gene that directly stimulating the innate 
immune system during later stages of infection [11]. The important 
role of IL-1β is activation of T and B cells [12]. The IL-1β produced 
as a precursor molecule is cleaved to generate a mature peptide that 
affects most cells and immune organ systems. 

The activation of specific Pathogen Recognition Receptors 
(PRRs), molecular moieties pathogen-specific immune responses 
are coordinated and dependent present upon sub-sets of leukocytes, 
such as macrophages or dendritic cells. The PRRs are respond to 
pathogens or their Pathogen Associated Molecular Patterns (PAMPs) 
by the initiation of distinct transcriptomic programmes, which will 
dictate the cellular or tissue response [13,14]. In mammals, the host 
transcriptional programmes have been identified by microarray 
analysis for specific PAMPs to bacterial [15], viral [16], parasitic [17], 
and fungal infections [18]. Both macrophages and dendritic cells are 

initiates the immune response by secreting molecules, such as pro-
inflammatory cytokines [19]. These arrays have been used to study 
the response in fish to vaccination [20] or stimulation with LPS [21]. 

The macrophage response to infection or activation by immune 
stimulants can be effectively analysed by microarray that allowing 
thousands of genes to be monitored for expression in parallel [22]. 
These microarrays employed by pathogens to evade the immune 
system are complex and by studying specific cell types or tissues the 
host defence strategies. In addition the gene expression response 
of T cells to PAMPs has been explored using microarrays [23]. To 
further characterize the response of specific cytokines have been used 
to stimulate human [24], murine [25], and bovine [26] macrophage 
cell lines. The availability of salmonid-specific gene chips [27-
29] has provided the means to begin to characterise the salmonid 
immune response at a global gene level both in vitro and in vivo. 
This technology will afford a deeper understanding of overall cellular 
and tissue processes during immune activation. A number of recent 
reports concerning PAMPs recognition [30], activated macrophage 
transcriptomics [29], immunomics [30,31], and genome-wide 
surveys [32,33] showed that fish and fish macrophages should lead 
to different physiological/immunological responses due to pathogens 
in vivo.
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The head kidney can consequently integrate the neuro-immuno-
endocrine milieu in normal and pathological states. However, few 
global gene regulation studies concerning the molecular regulation 
of head kidney function during infection or PAMPs stimulation in 
salmonids [34] have been described. Although many studies have 
used this tissue as a primary source of macrophage-like cells the 
activation of the immune systems [35]. Lipopolysaccharides (LPS) 
is the major constituent of Gram-negative bacteria is widely used 
for PAMP-preparation, which induces potent immune responses. A 
portion of LPS molecule is primarily responsible for the endotoxic 
properties in animals [36,37]. 

Intracellular killing of microorganisms by macrophages is essential 
for protection against a variety of pathogens including protozoan 
parasites, fungi, bacteria, and viruses [38-42]. Cytokine-activated 
vertebrate macrophages kill these pathogens by producing a number 
of highly toxic molecules including Reactive Oxygen Intermediates 
(ROI) and Reactive Nitrogen Intermediates (RNI) [43-45]. Nitric 
oxide (NO ) is reactive nitrogen intermediate produced in the 
cytoplasm of macrophages through the enzyme catalyzed oxidation 
of the terminal guanido nitrogen of L-arginine [45] and freely diffuses 
across cell membranes to target enzymes that contain catalytically 
active labile iron [40]. Production of NO by activated macrophages 
appears to be a primitive killing mechanism since immunocytes from 
invertebrates such as insects and starfish have also been reported to 
produce NO [46,47] that activated Goldfish Macrophage Cell Line 
(GMCL) [48] and primary goldfish macrophages [49].

Aeromonas hydrophila is well known to cause a variety of 
diseases in fish including goldfish, such as haemorrhagic septicaemia, 
infectious dropsy, tropical ulcerative disease and fin rot leading to 
heavy mortality in aquaculture industry [50,51]. Various synthetic 
chemicals and antibiotics have been used to prevent or treat fish 
diseases with a partial success. Treatment with adjuvanted vaccine 
is one such strategy as the successful development of new vaccines. 
It is reliant upon the availability of adjuvants that are not only safe 
for the host, but also induce immune responses complementary 
during natural infection [52]. Immunostimulants, when used alone 
to increase the immunocompetence and disease resistance of fish by 
enhancing the nonspecific defence mechanisms [53]. The adjuvants 
used in vaccines preparations that activate antigen-presenting cells 
(e.g. macrophages) to produce more of the signal molecules (e.g. 
cytokines) to recruit other immune system cells [54]. However, very 
few reports, but there is no report in goldfish against A. hydrophila 
infection.

The aim of this paper to investigation is to characterize in vivo 
biological activities displayed by goldfish IL-1β1, IL-1β2 and IL-6 
genes using an immunologically tractable model to focus special 
attention is mainly involved in the recruitment of leukocytes to the 
inflammatory foci rather than in their activation. In addition to 
investigate the release of cytokines from head kidney (HK) leucocytes 
susceptibility in fish after challenge and immunization (heat-
killed and formalin-killed) with A. hydrophila in goldfish and their 
inhibition of macrophage activity and differential tissue expression 
by RT-PCR.

Materials and Methods
Fish

Healthy goldfish, Carassius auratus weighing approximately 38 g 

were purchased from a local fish farm in Jeju Island, South Korea and 
transported to the laboratory in plastic bags filled with oxygenated 
water. The fishes were maintained randomly into 150-L aquaria 
a total of 400 fish. All the fish were acclimated for 2 week under 
laboratory conditions (14/10 h light/dark cycle) prior to challenge or 
immunization. The aquaria water quality parameters were monitored 
during the experimental period as dissolved oxygen concentration 5.5 
- 7.4 mg l-1 (Winkler’s method), pH 5.6 - 7.3, and temperature at 18 
- 21ºC. Fish were fed with a standard pelleted diet at 3% of their body 
weight twice a day during the experiment. Water of the aquarium was 
exchanged partially daily to remove waste feed and faecal materials. 

A. hydrophila
A. hydrophila (KCTC 2358) was obtained from Korean Collection 

for Type Cultures (KCTC) in Daejeon, South Korea and maintained 
in the laboratory. Subcultures were maintained on tryptic soy agar 
(TSA, Sigma) in slopes at 5ºC and routinely tested for pathogenesis 
[55], by inoculation into goldfish [56]. Stock culture in tryptic soy 
broth (TSB, Sigma) was stored at -70ºC in 0.85% NaCl with 20% 
glycerol (v/v) to provide stable inoculate throughout the experiment 
[57]. Subculture of A. hydrophila was taken on TSA slope and 
harvested by TSB. The inoculated TSB was incubated for 24 h in a 
shaker at 30ºC, and then centrifuged at 12000 g for 10 min at 4ºC [57]. 
The supernatant was discarded and the bacterial pellet was washed 
three times with Phosphate-Buffered Saline (PBS) at pH 7.2. The 
number of A. hydrophila cells ml-1 in one day culture was enumerated 
using standard plate count methods on TSA plates supplemented 
with 5% sheep’s blood [57]. An aliquot of 25 µl of culture used in 
the challenge was plated on BHI agar plates and incubated for 48 h 
at 28ºC. 

Preparation of vaccines
The whole-cell bacterin was prepared by Akhlaghi et al [58] 

with some modifications. A. hydrophila were grown for 48 h at 
28°C in TSB, and then washed with PBS for three times. Bacteria 
were grown to a density of approximately 1.0 x 105 viable cells ml-1. 
Suspensions containing bacterial cells were treated with formalin to 
a final concentration of 0.4% (v/v) overnight at 4°C. The suspension 
was centrifuged and washed three times with PBS as the initial 
volume, checked the sterility of bacteria and then stored at -70ºC 
until use. The washed, Formalin-Killed bacterial Cells (FKC) were re-
suspended in PBS and stored at 4°C until used. Heat-Killed bacterial 
Cells (HKC) were obtained by subjecting the harvested cells to 100°C 
for 15 min. Both FKC and HKC thereafter diluted with an equal 
volume of Freund’s complete adjuvant (FCA; ICN Biomedicals). The 
vaccines were stored at 4°C until use. Before use, the vaccines were 
kept at room temperature. The efficiency of E-mediated killing of A. 
hydrophila bacteria was estimated by plating samples of appropriate 
dilutions of freshly harvested FKC and HKC agar [59], and results 
were compared with those from samples obtained prior to onset of 
lysis. Results indicated a 100% killing efficiency as no colony forming 
units (cfu) were found on plates.

Experimental design, immunization and cumulative 
mortality

Four groups of goldfish (n = 400), each comprising 50 fish in 
triplicate. Before injection, all fish were anaesthetised in tricaine 
methanesulfonate (MS222, Sigma) (100 mg l-1). One of the group 
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Formalin-Killed Vaccine (FKV) was immunized against A. hydrophila 
by intra-pritoneal injection with 0.2 ml of Formalin-Killed Bacteria 
(FKB). Another group Heat-Killed Vaccine (HKV) was immunized 
against by intra-pritoneal injection with 0.2 ml of Heat-Killed 
Bacteria (HKB). After 15 days fish received same volume of FKB or 
HKB as a booster dose. Infected untreated group (I) were injected 
with 0.1 ml PBS containing A. hydrophila at a concentration of 1.0 x 
105 viable cells ml-1. The Control group (C) was injected with 0.2 ml 
sterile PBS or FCA. Earlier the challenge dose was standardized to 
give 90% mortality in the infected untreated group (I). The cumulative 
mortality of control or experimental (each in 20 fish) were recorded 
daily basis for 30 days. Relative Percent Survival (RPS) was calculated 
by the following formula of Amend [60],

RPS (%) = 1 – ((% test mortality) x 100)) / (% control mortality)

Sample collection
The anterior kidney, spleen, and intestine tissue sample were 

collected in triplicate aquaria per group per treatment (control 
or experimental) on 30 days. Fish were anesthetized in a 100 mg 
l-1 solution of tricaine methanesulfonate (MS-222, Syndel) before 
collection of kidney leucocytes and tissue samples. Individual fish was 
sampled only once to avoid the influence on the assays due to multiple 
bleeding and handling stress on the fish. All tissue samples were 
rinsed in cold phosphate buffered saline (PBS, Gibco) at pH 7.2 and 
stored in 1-ml Trizol® (Invitrogen) frozen at -80ºC in liquid nitrogen 
until DNA or RNA extraction. The Head Kidney (HK) leucocyte cells 
were subsequently removed for bioassay as described below.

Growth medium and isolation of goldfish kidney 
leukocytes  

The complete culture growth medium contained 5% carp 
serum and 10% fetal calf serum (Hyclone) used in all experiments 
has been previously described by Neumann et al. [44]. Head kidney 
leukocytes were isolated from goldfish kidneys following Neumann 
et al. [49]. Kidneys were aseptically removed and placed into a petri 
dish containing ice-cold medium. Using a sterile plunger from a 3cc 
syringe, kidneys were gently pressed through sterile stainless steel 
screens to release kidney cells. Screens were rinsed with medium 
containing antibiotics, such as 50 µg ml-1 of gentamicin, 100 U ml-1 
of penicillin, 100 µg ml-1 of streptomycin, and 50 U ml-1 of heparin. 
The resulting cell suspension was layered on 51% Percoll (Pharmacia) 
and centrifuged at 400 g for 25 min. Cells at the medium-51% Percoll 
interface were removed with a sterile pipette and transferred to sterile 
centrifuge tubes. To remove Percoll, cells were washed twice in 
serum-free medium and again centrifuged at 200 g for 10 min at 4°C. 
The viable leukocytes were enumerated using a haemocytometer after 
staining with trypan blue (Gibco).

Generation of in vitro-derived kidney macrophages 
(IVDKM)

The goldfish kidney leukocytes and macrophages secrete growth 
factors that induce selective proliferation and differentiation of 
macrophages from kidney hematopoietic tissues of the goldfish 
[61,62]. Cell Conditioned Medium (CCM) containing macrophage 
growth factors were obtained from the supernatants of 8-10 day 
old kidney leukocyte cultures. Kidney leukocytes (15-20 x 106 cells) 
were cultured in 20 ml of complete medium supplemented with 25% 
CCM. Cells were incubated at 20°C and fed on day 5 with 5 ml of 

complete medium. Cultures, 8-10 days old, were used as a source of 
macrophages for bioassays. Supernatants from these cultures were 
used as a source of CCM for establishing new macrophage cultures.

Generation of leukocyte supernatants for cytokine activity
Crude cytokine preparations were established following 

Neumann et al. [61]. The kidney leukocytes isolated from 25 fish were 
pooled and seeded in 75 cm2 tissue culture flasks at a concentration 
of 4 x 106 cells/ml, and incubated overnight in medium containing 
2.5% carp serum and 10% fetal calf serum (Hyclone) at 20°C. Mixed 
leukocyte cultures were stimulated the following morning with 10 
µg/ml concanavalin A (Con A, Boehringer Mannheim), 10 ng ml-1 
phorbol myristate acetate (PMA, Sigma), and 100 ng ml-1 calcium 
ionophore A23187 (Sigma). Cultures were stimulated with these 
mitogens for 6h, after which the mitogens and serum were removed 
by washing the adherent cell layer with three changes of 20 ml Hanks 
Balanced Salt Solution (HBSS). The remaining adherent cell layer 
was given fresh serum-free medium and incubated for 72h at 20°C. 
Supernatants were subsequently removed, filter sterilized, and stored 
at -20°C until used in assays. These cytokine preparations were used 
as either a source of Macrophage Activating Factors (MAFs), or for 
isolating goldfish Macrophage Deactivating Factors (MDFs). 

Characterization of MDF
Gel-permeation fast performance liquid chromatography (GP-

FPLC): The initial analyses of MAF and MDF activities were following 
Neumann et al. [61]. The cytokine preparations were concentrated 
by dialysis against Polyethyleneglycol (PEG) and were placed into 
dialysis bags (molecular weight cutoff=3.5 kD, SpectroPor) and 
covered in PEG flakes (MW=20 kD, Sigma). Concentration was 
allowed to proceed until half of the original volume remained in the 
dialysis bag. Samples underwent repeated half concentrate dialysis 
until the volume of the original crude preparation was concentrated 
36-fold. The concentrated cytokine preparations were filter sterilized 
(0.22 mM filter, Millipore), separated into 500 ml samples, and stored 
at -20°C. Then the cytokine samples were fractionated according to 
size using a Superose 6 column (Pharmacia). GP-FPLC was carried 
out at 22°C using an FPLC system from LKB (Pharmacia, Bromma, 
Sweden). Concentrated cytokine preparations were thawed and 
centrifuged at 19000 g for 10 min before injecting 200 ml fractions 
onto the column. The running buffer used for GP-FPLC was 1x PBS 
(pH 7.2). All GP-FPLC fractions were collected at 2.5 min intervals 
into 15 ml centrifuge tubes, subsequently sterilized, and stored at 
-20°C until used in assays.

Chromatofocusing gel- permeation fast performance liquid 
chromatography (C-FPLC): Separation of GP-FPLC fractions by 
isoelectric focusing was performed following Neumann et al. [61]. GP-
FPLC fractions displaying maximal MDF activity were concentrated 
using microcentrifugal concentrators (Filtron; MW cutoff=3 kD). 
Prior to addition of MDF, the polystyrene microcentrifugal sample 
chamber was blocked for 30 min with 1% calf serum to prevent 
non-specific absorption of MDF activity. Chromatofocusing 
of concentrated MDF was performed using a Mono-P column 
(Pharmacia). The Mono-P column was pre-equilibrated with 0.025 
M bis-Tris (pH 7.0, 1 M HCL) for establishment of the upper limits 
of the gradient. A linear descending pH gradient (7.0-4.0) was 
established by running a 1:10 dilution of Polybuffer 74 (Pharmacia) 



J Bacteriol Mycol 6(6): id1119 (2019)  - Page - 04

Ramasamyc H Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

at a flow rate of 0.75 ml/min through the column. MDF samples (500 
ml) were allowed to elute through the column for 30 min prior to 
initiation of the pH gradient. C-FPLC fractions were collected in 15 
ml polystyrene tubes containing an equal volume of 10% calf serum 
(diluted in 1x PBS) in order to stabilize biological activity. Proteins 
bound to the Mono-P column (i.e. proteins having an isoelectric 
point of less than 4.0) were eluted from the column using a 2 M NaCl 
solution. This salt solution was injected onto the Mono-P column 
(5 injections of 500 ml) at flow rate of 0.25 ml/min. Protein elution 
was monitored by UV absorption (280 nm), and approximately 2 ml 
of eluted protein was collected. Of the eluent, 1 ml was stabilized by 
adding an equal volume of 10% calf serum (in PBS), and placed in 
a dialysis bag (3.5 kD cutoff, SpectroPor). This sample was dialyzed 
overnight in 1x PBS to remove excess salt. The serum-stabilized SE 
was subsequently tested for MDF activity using the NO bioassay.

Functional characterization of MDF in crude cytokine 
preparations

The functional analysis of GP-FPLC crude cytokine preparations 
was determined by pre-treating 8-10 days old IVDKM (5 x 104 cells/
well) with 25 ml of each fraction (1:3 dilution) for 6 h. Cells were 
subsequently activated with LPS (1 µg ml-1) and crude MAF (1:4 
dilution) and NO production determined 72 h later using the Griess 
reaction. 

MDF inhibition of activated goldfish macrophage NO 
responses

To assess the ability of MDF to inhibit NO production of activated 
macrophages, 8-10 day old IVDKM were seeded into the wells of 
half-area 96-well culture plates (Costar) at 5 x 104 cells/well and pre-
treated for 6 h with GP-FPLC fraction containing maximal MDF 
activity (1:3 dilution), or C-FPLC SE (1:5 to 1:160). Macrophages 
were subsequently activated with crude MAF (1:4) and LPS (1 µg ml-

1), LPS alone (1 and 10 µg ml-1), or infected with Leishmania major. 
Activated macrophages were then incubated for an additional 72h 
at 20°C before determination of nitrite production by the Griess 
reaction. 

Effects of activation sequence and MDF dose on NO 
production 

On 8-10 days old IVDKM were exposed to MDF at varying 
times pre- and post-activation to determine whether macrophages 
required pre-treatment with MDF in order to deactivate nitric 
oxide production by activated macrophages. Goldfish macrophages 
were placed in wells of half-area 96-well culture plates (5 x 104 cell/
well), and triplicate groups treated with the GP-FPLC fraction with 
maximal MDF activity (1:5 dilution) 24 or 6h prior to activation with 
MAF (1:4) and LPS (1 µg ml-1). In parallel cultures, macrophages were 
treated with MAF (1:4) and LPS (1 µg ml-1) for 24 h prior to addition 
of MDF (1:3 dilution). Then the macrophages were incubated for 72h 
after stimulation at 20°C before determination of nitrite production 
by Griess reaction. The effect of MDF dose on inhibition of NO 
production by goldfish macrophages was determined by plating 5 x 
104 goldfish macrophages in wells of half-area 96-well culture plates 
and pre-treating macrophages for 6h with serial dilutions of MDF 
(from 1:5 to 1:160). The macrophages were subsequently activated 
with MAF (1:5) and LPS (1 µg ml-1) or LPS alone (1 and 10 µg ml-1) and 
incubated for 72h at 20°C before determination of NO production. 

Nitric oxide assay
NO production by goldfish macrophages was determined 

indirectly using the Griess reaction [62]. A volume of 75 µl of 
supernatants from individual macrophage cultures was transferred to 
a microtitre plate and 100 µl of 1% sulfanilamide (Sigma) (dissolved in 
2.5% H3PO4) followed by 100 µl of 0.1% N-naphthyl-ethylenediamine 
(Sigma) (dissolved in 2.5% phosphoric acid) was added to each well. 
The plate was allowed to sit for 2 min before the optical densities 
(OD 540 nm) were determined using an automated microtitre plate 
spectrophotometer (Biotek). The approximate concentration of 
nitrite in samples was determined from a standard curve generated 
using known concentrations of sodium nitrite. 

Effects of MDF treatment on the viability 
Goldfish macrophages were seeded in triplicate into 6 ml tubes 

at a cell density of 2.5 x 105 cells in 250 µl. Cells were pre-treated 
with 125 µl medium, 1x PBS at pH 7.2, or partially purified MDF 
for 6h. Subsequently the macrophages were activated with MAF (1:5 
final dilution) and LPS (1 µg ml-1) and incubation at 20°C for 72h. 
The nitrite production was determined in the culture supernatants 
and cell number and viability by haemocytometer after staining with 
trypan blue (Gibco).

Isolation of total RNA and cDNA synthesis 
Tissue samples were subsequently thawed and homogenized 

in RNAzol B (Biogenesis) on ice. Total RNA was extracted and 
reversed transcribed analysis were taken an equal amount (50 mg) 
of tissue samples was obtained separately from each tissue in three 
replicate to make a pool, before isolation of the RNA. Total RNA was 
extracted from pooled tissue (150 μg) using Trizol® (Invitrogen) in 
according to the manufacturer’s protocol. The total RNA was stored 
at -80°C until further use. The total RNA concentration and purity 
were determined by measuring the absorbance at 260 and 280 nm 
in a UV-spectrometer (Bio Rad, USA). Originally purified RNA was 
diluted up to 1 µg/µl concentration before synthesis of cDNA. Two 
micrograms of total RNA of goldfish tissues were used to synthesize 
cDNA from each tissue using a Superscript™ III first-strand synthesis 
system for RT-PCR kit (Solgent). Then the RNA was incubated with 
1 µl of 50 mM oligo (dT) 20 (500 µg ml-1, Invitrogen) and 2 µl of 10 
mM dNTPs (Solgent) for 10 min at 70°C. After incubation, 4 µl of 
5x cDNA synthesis buffer (Solgent), 1 µl of dithiothreitol (DTT, 0.1 
M, Solgent), 0.5 µl of RNase inhibitor (Solgent) (40 U/µl),  and 1 µl 
of SuperScript™ III reverse transcriptase (15 U/µl) were added and 
incubated for 1h at 50°C. Then, 1 µl Diastar RNase was added to each 
cDNA and incubated at 50°C for 50 min. Finally, synthesized cDNA 
was diluted 10-fold (total 200 µl) before storing at -20°C.

mRNA expression analysis by real time PCR
PCR was carried out using different primers sets and different 

conditions for β-actin (positive control), IL-1β1, IL-1β2, and IL-6 
genes were given in Table 1. The β-actin and IL-1β1, IL-1β2, and IL-6 
PCR’s, amplifications were performed in 25 µl reactions containing 
the following components: 5 ml of cDNA template (diluted in water), 
1 µl (25 pmol) of each primer, 2.5 ml of 10X reaction buffer (160 mM 
(NH4)2SO4, 670 mM Tris–HCl, pH8.8, 0.1% Tween-20, Bioline), 0.5 
ml dNTP mixture (2.5 mM for each base, Bioline), 1.25 µl of 50mM 
MgCl2 (Bioline), 0.125 µl (0.625 U) of Taq polymerase (Bioline) and 
13.625 ml of sterile H2O The components of the PCR reaction for IL-
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1β1, IL-1β2, and IL-6 were identical, except that 1.25 µl forward and 
reverse primers, 1 µl dNTP mix, 1 µl MgCl2 and 13.375 µl of H2O was 
used. The first PCR in each case was for β-actin, and the amount of 
cDNA used in each sample was titrated (between 1 and 3 µl) to give a 
constant product yield. The same amount of cDNA was then used for 
all subsequent immune gene PCR’s as a way of normalising the data 
in order to give a more quantitative result. 

Analysis of expression profile and the relative expression 
ratio 

PCR products were visualised on a 2% agarose gel containing 0.1 
mg ml-1 ethidium bromide. The relative levels of RNA were quantified 
for each gene by densitometric scanning of agarose gel images using a 
UVP gel imaging system and UVP Gel-works ID advanced software. 
Ratios of gene product: β-actin product were calculated for each of 
the three genes (for IL-1β1, IL-1β2, and IL-6) and used to quantify 
inter-group differences in expression levels. The products were run 
on the gel for 1h at 100 V, using a 100 bp DNA ladder (Bioneer) as 
a size marker. All the gel was then visualized using a Gel Doc image 
analysis system (Bio-Rad). The relative folds (ratio) of IL-1β1, IL-
1β2, and IL-6 expression relative to β-actin expression using the 
pixel density for each product were determined by Lab Works image 
acquisition and analysis software. This enabled the evaluation of 
differential expression of IL-1β1, IL-1β2, and IL-6 genes between 
different sample groups. 

Statistical analysis
The PBS injected sample as expression was compared challenged 

or immunized with A. hydrophila samples to determine the relative 
level of expression and respective PBS control for each induction 

experiment to determine the fold change in expression. All data 
represent means ± standard error and were subjected to a one-
way analysis of variance (ANOVA) followed by Duncan’s Multiple 
Range test using the SPSS 11.5 program. Differences were considered 
statistically significant at p < 0.05. 

Results
Inhibition of macrophage activity

The effect of Macrophage Deactivation Factor (MDFs) on 
viability cells in the medium, Control (C), Infected (I), Heat-Killed 
(HKV) and Formalin-Killed (FKV) vaccines treated groups are show 
in (Figure 1). The viability cells in the medium were 50.0±0.58. The 
control group the viability cells were high at 54.5±0.50. However, 
infected untreated group was low at 51.8±0.79. On the other hand, 
heat-killed and formalin-killed vaccine treated groups were 55.2±0.75 
and 58.3±0.49 (Figure 1).

The percentage of total cell number cells in the medium of 
Macrophage Deactivation Factor (MDFs) was 86.8±0.65. The 
percentage of total cell number cells in the control group was high at 
89.8±0.65. But infected untreated group, the percentage of total cell 
number cells was low at 88.3±0.56. On the other hand, heat-killed 
and formalin-killed vaccine treated groups were high at 90.8±0.79 
and 93.5±0.89 (Figure 2).

The nitric oxide production in the medium was 1.15±0.08. The 
control group, the nitric oxide production was very high at 13.4±0.32. 
However, infected untreated group the nitric oxide production was 
very low at 3.5±0.13. Interestingly, heat-killed and formalin-killed 
vaccine treated groups were high at 8.25±0.26 and 10.4±0.38 (Figure 

Genes GenBank accession no. Primer sequence Size (bp) Tem. (ºC) Cycles Time

β-actin BAA92339 F: ATTGTGATGGACTCCGGTGATGGT 386 95 1x 2 min

  

R: AAGGTGGTCTCATGGATACCGCAA

 

95 30x 20 s

 

64 30x 40 s

72 30x 1 min

72 1x 5 min

IL-1β1 AJ419848 F: TCCTCACAGCATGAAGAAGGTGGT 419 95 1x 2 min

  

R: ACCCATCAGACTCGGTACAAGCAA

 

95 30x 20 s

 

64 30x 40 s

72 30x 1 min

72 1x 5 min

IL-1β2 AJ419849 F: ATAAGACCAGGCAGACCTTGCAGT 450 95 1x 2 min

  

R: TTGGCCTCTGGTACATTTCCACCT

 

95 30x 20 s

 

64 30x 40 s

72 30x 1 min

72 1x 5 min

IL-6 DQ861993 F: AGGCTCACCAGGTTAACGAGCAAA 352 95 1x 2 min

  

R: TTTCAGCTGGCTCAGGAATGGGTA

 

95 30x 20 s

 

64 30x 40 s

72 30x 1 min

72 1x 5 min

Table 1: Gene-specific primers sets and conditions used for PCR.



J Bacteriol Mycol 6(6): id1119 (2019)  - Page - 06

Ramasamyc H Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

3).

GP-FPLC partially purified MDF inhibited the NO response of 
macrophages activated with different doses of LPS. The MDF also 
significantly inhibited the NO production of goldfish macrophages 
activated with MAF and LPS and that of goldfish macrophages 
infected with A. hydrophila (Figure 4). The NO response of infected 
or immunized or cytokine-activated macrophages was abrogated by 
serial dilution of the MDF, indicating a dose-dependency for MDF 
activity (Figures 4 and 5). 

Expression after post-challenge and immunization with A. 
hydrophila in goldfish tissues

The tissue-specific IL-1β1, IL-1β2, and IL-6 genes expression 
were measure by semi quantitative Real-Time PCR. The IL-1β1 of 
control group’s expression was high in the kidney and low in the 
spleen tissues. The IL-1β2 expression was high in the spleen and 

low in the intestine tissues of control groups. On the other hand, the 
control group IL-6 genes expression was similar both in kidney and 
spleen tissues. The infected untreated group, the IL-1β1 expression 
was very low in the spleen and other tissues little or no expression. 
On the other hand, IL-1β2 expression was low in the kidney and other 
tissues are absent. The heat-killed vaccine treated group, the IL-1β1 
expression was high in the kidney tissues while the IL-1β2 expression 
in the spleen. The other tissues of the IL-1β1 and IL-1β2 expression 
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Figure 1: Effect of macrophage deactivation factor (MDFs) on viability cells in 
the medium, Control (C), Infected (I), Heat-Killed (HKV), and Formalin-Killed 
(FKV) vaccines treated groups.
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Figure 2: Effect of Macrophage Deactivation Factor (MDFs) on viability (%) 
of total cell number cells in the medium, Control (C), Infected (I), Heat-Killed 
(HKV), and Formalin-Killed (FKV) vaccines treated groups. % Viable cells = 
number of live cells - number of dead cells / number live cells x 100.
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Figure 3: Nitric oxide production in the medium, Control (C), Infected (I), 
Heat-Killed (HKV), and Formalin-Killed (FKV) vaccines treated groups of 
stimulated goldfish Macrophages (MDFs).
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Figure 4: Nitric oxide production of goldfish macrophages (5 x 104 cells/well) 
following infection with A.  hydrophila were seeded into half-area 96-well 
culture plates (Costar). Cells were then treated with various concentrations of 
MDF (1:5±1:160 final concentration) or medium 6h prior to addition of bacteria 
(mean ± SEM in triplicate cultures and is representative of two independent 
experiments that were performed).
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Figure 5: Macrophage (5 x 104 cells/well) Deactivation Factor (MDF) 
dose response were seeded into half-area 96-well culture plates (Costar) 
and pre-treated for 6 h with various MDF concentrations (1:5±1:160 final 
concentration). Macrophages were subsequently activated with MAF (1:5) 
and LPS (1 mg ml-1) and cells were incubated for 72 h following stimulation at 
20°C prior to determination of nitrite production (% inhibition nitrite production 
of triplicate cultures and is representative of two experiments that were 
performed).

Figure 6: Real time PCR results of IL-1β1, IL-1β2, and IL-6 genes expression 
in the Control (C), Infected (I), Heat-Killed (HKV), and Formalin-Killed (FKV) 
vaccines treated goldfish kidney, intestine, and spleen. The expression of 
each gene was normalised to β-actin. The real time PCRs were all performed 
in triplicate and are shown as mean ± SEM.
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was very low or absent. However, the IL-6 genes expression was seen 
high all the tissues. The formalin-killed vaccine treated group of all 
genes were seen the expression. However, the expressions were high 
in the kidney and spleen then the intestine (Figure 6). 

Disease resistance
The Infected untreated goldfish (I) the cumulative mortality 

was 90% for 30 days post-challenge. However, infected goldfish 
after immunized with Heat-Killed or Formalin-Killed (HK or FK) 
A. hydrophila treated goldfish mortality were 35% and 25%. The 
Control (C) group without challenge with A. hydrophila group has 
no mortality (Figure 7).

Discussion
The mitogen-induced fish kidney leukocyte supernatants to be 

produce macrophage activate factors that induce macrophage anti-
microbial responses in goldfish. The crude cytokine preparations 
containing factors, such as activate and deactivate macrophage 
antimicrobial responses [63]. Crude cytokine supernatants contain 
30 and 50 kD molecules that induce the production of ROI and RNI 
in fish macrophages, while 12 kD molecule inhibits RNI production 
[63]. The present study further understanding the biological activity 
of this MDF, and describes the partial purification of this molecule 
from crude cytokine preparations in goldfish. The MDF from crude 
cytokine preparations required that these crude preparations first be 
fractionated using GP-FPLC in order to separate MAF activity from 
MDF activity. The supernatants collected from mitogen-stimulated 
leukocytes were purified GP-FPLC and individual fractions tested 
for their ability to inhibit NO production of activated macrophages. 
The macrophages were pre-treated with purified GP-FPLC fractions 
prior to stimulation with MAF and LPS, ensuring that MDF would be 
presented to macrophages prior to activation with MAF and/or LPS.

The crude cytokine preparations are present MDF that inhibited 
NO production of goldfish macrophages and stimulated with MAF 
and LPS or LPS only. Simultaneous addition of MDF and the 
activating signals caused only a 34% reduction in the macrophage 
NO response.  However, macrophages treated with MDF 24h after 
stimulation with MAF and LPS, exhibited normal NO production. 
This optimal MDF activity is achieved by pre-treating with MDF 
prior to activation of macrophages. These results are similar to 
those reported for murine macrophages treated with IL-4 shown to 
inhibit NO production by IFN-γ- and/or LPS activated macrophages 
provided that macrophages were pre-treated with IL-4 prior to 
activation with IFN-γ and/or LPS [62]. Interleukin 4 added 18 h after 

IFN-γ and/or LPS has been shown to enhance nitric oxide production 
and killing of L. major by activated murine macrophages [64].

This study goldfish macrophages were mount potent NO 
responses when infected with A. hydrophila. It is well established that 
infected murine macrophages require an accessory stimulus, such 
as IFN-γ, for induction of their NO response [40,65]. These results 
suggest that fish macrophages may produce NO in response to an 
intracellular infection. We know that phagocytosis alone is not an 
effective signal for induction of NO since latex beads do not induce 
NO production in goldfish macrophages [63]. That the regulation of 
NO production in macrophages may be more primitive in teleosts, 
is supported by our data that MDF inhibited both A. hydrophila and 
LPS-mediated induction of the NO response, suggesting that MDF 
may exert its effects downstream of the convergent LPS A. hydrophila 
nitric oxide-inducing pathways. IL-4 [64] and IL-10 [65] cytokines 
are known to deactivate mammalian macrophages. Interleukin 10 
was also shown to inhibit both the release of TNF-α by activated 
macrophages and MAFs derived from T cells [66,67].

Bovine TGF-β1 has been shown to inhibit ROI production 
of rainbow trout macrophages suggesting that this cytokine 
may be an important macrophage deactivator in fish [68]. The 
high conservation of piscine and mammalian TGF-β, the potent 
macrophage deactivating properties of this cytokine and the similar 
Mr of the biologically active forms of mammalian TGF-β 1-3 and 
the teleost MDF identified in this study, suggests that TGF-β may 
be a potential candidate for this endogenously-derived teleost MDF. 
Teleost homologues equivalent to the deactivating mammalian 
cytokines IL-4, IL-10, and IL-13 may also be potential candidates for 
the macrophage deactivation activities identified in this study. The 
precise molecular nature of MDF remains to be determined.

In recent years, many immune-related cytokine genes have been 
identified and characterized, which has helped in numerous studies 
on the expression of these genes during disease development and 
understanding molecular pathogenesis [69-71]. Several authors have 
been documented the innate as well as specific immune parameters 
in fish exposed to other pathogens [72-76]. The immunomodulation 
mechanism in fish induced by A. hydrophila is still poorly 
understood. The innate immune response in fish is the first line of 
defence against any tissue damage or pathogen interaction, which 
involves both fixed and mobile cells, and large number of molecules 
dissolved in body fluids. IL-1β is one of the crucial early response 
pro-inflammatory cytokines. It is enables organisms to respond to 
infectious insults that inducing an inflammatory cascade, along with 
other defensive responses. This acute phase response related genes, 
such as transferrin and ceruloplasmin, are induced that bind to iron 
and create a bacteriostatic environment by limiting the availability 
of iron to replicating pathogens. Some other gene products, such as 
lysozyme, protease inhibitors, and complement proteins may play a 
role in further restricting their multiplication or pathogenesis [77,78].

The changes in immune system during infection are also indicated 
by the up- or down-regulation of immune-related genes. Because A. 
hydrophila is a major problem in aquaculture industry [79,80]. The 
expression studies of immune-related gene in goldfish have been 
recently initiated our laboratory, and understanding of immune 
responses to A. hydrophila is limited. The present work is the first of 
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Figure 7: Cumulative mortality of control (C), Infected untreated (I), Heat-
Killed (HKV) or Formalin-Killed (FKV) A. hydrophila vaccines administration 
for 30 days.
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such expression studies in goldfish for few important immune-related 
genes of IL-1β and IL-6. Semi-quantitative RT-PCR was performed 
on kidney and spleen tissues samples to identify up/down regulated 
mRNA expression relative to uninfected control fish and normalized 
to the housekeeping gene, β-actin. In our experiment, administration 
of bacteria intraperitoneally allowed the pathogen immediate access 
to the vasculature, and infected fish subsequently displayed a rapid 
induction of immune genes of IL-1β and IL-6.

Analyses of IL-1β mRNA expression profiles revealed evidence 
of up-regulation of the inflammatory response in zebrafish embryos 
and adults as a result of E. tarda infection [81]. Expression of c-type 
lysozyme was found to increase in anterior kidney, spleen, and ovary 
of Japanese flounder following E. tarda infection [82]. E. tarda is 
capable of inducing production of NO and TNFα from macrophages 
attributing to its high virulence [83] and extracellular products of E. 
tarda isolates have been noted to promote chemokinetic movement 
of macrophages of Nile tilapia [27].

IL-1β is a major player in immune response of fish as in mammals 
[84] and is a key mediator in response to microbial invasion and tissue 
injury that stimulate immune responses by activating lymphocytes 
or by inducing the release of other cytokines capable of triggering 
macrophages, NK cells, and lymphocytes. The macrophages are the 
primary source of IL-1β was found to be significantly up-regulated 
during E. tarda infection in rohu as noticed previously in zebrafish 
embryos and adults during infection [81]. The up-regulation of IL-
1β and IL-6 genes mRNA expression in the head kidney, intestine, 
and spleen of vaccine treated groups as suggested in Atlantic salmon 
vaccinated with multivalent bacterial vaccine previously [85]. 
Increase in IL-1β and IL-6 genes expression in the head kidney of 
goldfish was noticed after administration of vaccine treated groups. 
The increase in IL-1β gene expression indicates that induce mucus 
secretion and activation of macrophages as well as up-regulating 
the expression of a number of NF-kB-dependent genes [69]. Thus, 
significant upregulation of IL-1β and IL-6 gene expression in goldfish 
provides in this study evidence that early inflammatory immune 
response is stimulated upon infection with A. hydropila. 

IL-1β expression can activate transcription factors such as NF-
kB, which has been shown to be important for iNOS transcription in 
fish [86]. Therefore, the present study was observed up-regulation in 
IL-1β gene expression may increase in iNOS expression might have 
helped in the production of Reactive Nitrogen Intermediates (RNIs) 
that may damage the pathogen at the earlier phase (data not shown). 
A. hydropila infection, the handling of pathogens by macrophages 
through production of RNI might be playing crucial role rather 
than iNOS-independent (more likely ROI) pathway, which is being 
degraded by production of antioxidant enzymes by bacterium.

Significant down-regulation of expression in the infected 
untreated group was noted in goldfish after infection with A. 
hydropila. Haugland et al. [85] observed differential expression of 
the two variants (types 1 and 2) in Atlantic salmon administered 
with an oil-based multivalent vaccine. In head kidney and spleen of 
formaline-killed vaccine treated group, the expression of IL-1β and 
IL-6 was markedly high, which showed no changes in the expression 
levels in control group. Similarly, the expression of IL-1β and IL-6 
genes showed significant rise in the head kidney of infected goldfish 

after immunization with A. hydropila. This up-regulation of IL-1β and 
IL-6 genes might be responsible for the rise inhibition of macrophages 
activity of goldfish after immunization with A. hydropila as indicated 
in the present study. It is interesting to find that up-regulation in 
the expression of IL-1β and IL-6 genes were noticed vaccine treated 
groups whereas, down-regulation of infected untreated group. The 
tissue samples were collected from survived fish after challenge. Thus, 
up- and down-regulation of the above genes studied here might be 
playing important role in A. hydropila pathogenesis and survival. 
The present study add to the understanding of the goldfish immune 
responses to one important Gram-negative bacterium A. hydropila 
and provide a foundation of further genomic characterization of 
immune-related genes from this important culturable fish. Further 
study is needed to elucidate the function of this innate immune gene 
expression during A. hydropila infection, in terms of the effects on 
eventual survival and recovery from infection.
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