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than in aqueous solutions [22]. TFE which provides a low dielectric 
constant similar to that of the cell membrane, favours the formation of 
intra-peptide hydrogen bonds [35]. My previous study of Penetratin 
in live melanoma cells revealed that the peptide contained both 
random coil and β-strand in the cytoplasm, and possibly assembled 
as β-sheets in the nucleus. Furthermore, evaluation of Rn, where n is 
between 6 to 30, for their cellular uptake showed the cell penetrating 
capacity peaked at R15 [29]. With the high structural flexibility and 
the short length, lysine and arginine rich CPPs have demonstrated 
the potential to adjust their conformation that may assist them with 
the translocation into the cell [34]. Further research needs to focus 
on the secondary structure of the CPPs in various conditions, and 
how they interact with cell membranes with the hope of revealing the 
connection between the structure and the peptide cell entry.
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Editorial
Cell Penetrating Peptides (CPPs) or membrane transduction 

peptides are named for their ability to penetrate various types of 
cells [1,2]. They are synthetic peptides typically less than 30 amino 
acids in length. Their primary sequences come either from a parent 
protein expressed in cells or are derived from natural peptides [3-
11]. CPPs can carry cargos ranging from small molecules to macro 
molecules such as proteins and nucleic acids [12,13], which are 
otherwise difficult to translocate into cells. For this reason, they were 
quickly earmarked as potential cellular delivery tools. Understanding 
the mechanism of CPP cell entry is of great significance in both cell 
biology and targeted drug delivery.

The mechanisms, through which the CPPs translocated into cells, 
have been studied but are inconclusive. Some evidence indicates 
receptor independent endocytosis as the CPP cell entry mechanism 
[14-18]. The CPP endosomal release is considered as the main 
obstacle for the application of CPPs in drug delivery. Other evidence 
supports direct translocation through the cell membranes or non-
endocytic pathways [19-22]. Still other studies have suggested that 
both endocytosis and direct translocation coexist for the CPPs’ 
cell entry [23-25]. The relative importance of the endocytosis and 
non-endocytosis mechanisms seems to depend on the extracellular 
concentration, the peptide sequence, and the cell types. The increasing 
concentration of the peptides increases the likely importance of non-
endocytic translocation mechanisms.

CPPs could be hydrophobic, amphipathic, or hydrophilic. 
Although they lack a definite pattern for their primary sequences, the 
majority of CPPs are cationic being rich in basic amino acids such 
as arginine and lysine. They are, therefore, attracted to the partially 
negatively charged cell membranes [26] and proteoglycans on cell 
surfaces [27]. Cationic polypeptides, such as poly-lysine, Kn, and 
poly-arginine, Rn, were found to increase the serum albumin uptake 
in cells [28]. The fact that Rn has been shown to be more efficient at 
translocating into cells than Kn led to the belief that the guanidino 
group in arginine is crucial for cellular uptake of CPPs [26-30]. 
On the other hand, peptides such as Transportan, Hel 11-7, MAP, 
and MPG-α contain only lysine as their basic amino acids [31-34].
Therefore, it appears that the guanidino group though beneficial, is 
not required for CPP penetration. It is necessary to investigate the 
roles of the secondary structures of CPPs in their translocation across 
the cell membrane. For example, Penetratin and Transportan have 
adopted more α-helix in the presence of 2,2,2-trifluoroethanol (TFE) 
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