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specialized tissues, including neurons, muscles, vasculatures and 
immune cells [13], it has been long known that NO is critically 
involved in many aspects of tissue morphogenesis in diverse 
organisms from invertebrates to rodents [14,15]. This is primarily 
due to NO’s roles in promoting cell-cell junctions [16] and cell 
polarity [17] while inhibiting cell division and contractility mediated 
by RhoA kinase [18]. As for NO’s role in cancer, there has been a 
widespread controversy over its biphasic (pro- and anti-tumor) roles 
[19-22] depending on the context and concentration [23]. As a result, 
the experimental data are conflicting so far [24,25]. We propose 
that normal breast tissues produce a basal level of NO to promote 
mammary morphogenesis and maintain tissue homeostasis. If the 
balance of this system is impaired, tumors will be initiated or cells 
will die. 

One way by which NO mediates morphogenesis of normal breast 
tissues is that NO promotes formation of cell polarity and cell-cell 
junctions. This is done by NO’s upregulation of cortical actin and 
E-cadherin junctions [11]. Such functions of NO are at least in part 
due to the localization of NO Synthase (NOS)-1 and -3 (neuronal 
and endothelial NOS, respectively) which are part of complexes 
involved in mechanotransduction of signals received at the ECM 
receptors [26,27]. In particular, NOS-1 interacts with the laminin 
receptor dystroglycan [27], while interacting with the polarity protein 
Scribble [17] which stabilizes E-cadherin junctions [28]. Upon NO 
production, proteins proximal to NOS (e.g., ECM receptors, ECM 
ligands, cytoskeletons, junction and polarity proteins as well as 
nuclear membrane proteins) are S-nitrosylated [29], which in turn 
modulates their functions to drive epithelial morphogenesis.

The second way is that NO upregulates the p53 pathway, through 
S-nitrosylation and inactivation of different p53 inhibitors, (e.g., 
MDM2 [30], HDAC [31] and Parkin [32,33]). Activated p53 in 
turn triggers a cascade of signalling events that ultimately elevates 
the biogenesis and stability of the basement membrane protein 
laminin [11]. Laminin is essential for the formation of the basement 
membrane anchored at hemidesmosome [12].

As an additional mechanism, we are currently examining the 
possibility that NO S-nitrosylates ECM proteins as well as growth 
factors sequestered at the ECM to regulate their functions for 
the maintenance of the normal breast tissues. In addition, we are 
analyzing the consequences of reduction of NO production, which 
disrupts mammary epithelial tissue structure and dysregulates the 
ECM components, ultimately leading to tumor initiation.

We are utilizing high-resolution and atomic force microscopy, 
rhometry, 3D organotypic co-culture of primary cells as well as 
animal models to test our hypotheses. We are also planning to profile 
S-nitrosylated proteins in normal vs. cancerous breast cells by biotin 
switch/mass spectrometry and test the relevance of this modification. 
We hope that completion of this project will fundamentally advance 
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The number of new cases of cancer is 0.5 percent in men and 

women in the US [1]. This figure seems staggering at first. But given 
that our body has 50 trillion cells [2] and each cell could accumulate 
~25 sporadic mutations in the genome per replication [3], we should 
realize that the cancer incidence is actually a lot less than what it could 
be. Furthermore, our cells are constantly exposed to carcinogens, 
mutagens, oxidative stress, UV radiation, etc. Then, why aren’t we 
getting more cancers than what we actually get?

The answer is that our body is equipped with inherent defense 
mechanisms against cancer. These include immunosurveillance [4], 
DNA damage repair, cell death, senescence [5] and anti-oxidant 
mechanisms [6]. Besides, normal epithelial cells utilize additional 
protective mechanisms against malignancy. First, epithelial cells are 
surrounded by the basement membrane, the fibrous extracellular 
matrix (ECM) that filters out unwanted molecules, such as excessive 
growth factors and inflammatory cytokines [7]. Second, cells carrying 
“unfitted” mutations are eliminated by their surrounding “fitter” cells 
through a process termed “cell competition” [8]. Third, our laboratory 
previously reported that normal breast epithelial cells undergoing 
alveologenesis (i.e., mammary gland development during pregnancy) 
secrete a collection of factors that could selectively kill tumor cells, 
without affecting normal cells or subdue them into a dormant state 
[9,10]. These mechanisms become less efficient as we grow older, 
making cells more susceptible to a stress that could trigger cancer 
initiation.

In our laboratory, we are examining the possibility of an additional 
mechanism by which normal breast epithelial cells defend themselves 
against breast cancer. We hypothesize that nitric oxide (NO), 
produced by normal breast epithelial cells, biochemically modulates 
(i.e., S-nitrosylates) signalling and structural molecules within cells 
and microenvironment to help establish tissue homeostasis, while 
protecting tissues against tumorigenic stress. This hypothesis is based 
on our recent finding that normal breast epithelial cells produce 
a significant amount of NO in response to laminins, the major 
basement membrane proteins in the normal breast tissue. In contrast, 
this mechanism is compromised in malignant cells [11,12]. 

NO is a reactive gaseous signalling molecule ubiquitously 
expressed throughout our body. Although it is mainly studied in 
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our understanding the self-defense mechanism of normal tissues and 
how this is destroyed under stress, exposing cells to tumorigenesis. 
Equally important, this project will at least in part clarify the role of 
NO in cancer and open up a new field of NO research.
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