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following mechanism underlying aging-delaying action of LCA in 
yeast. Exogenously added LCA enters yeast cells, where it is sorted 
to the inner and outer mitochondrial membranes [20]. Because 
LCA causes a distinctive remodeling of the synthesis and transfer 
of phospholipids within both these membranes, it elicits substantial 
changes in mitochondrial membrane lipidome [20]. These LCA-
driven changes in the concentrations of mitochondrial membrane 
phospholipids lead to characteristic changes in mitochondrial size, 
number and cristae morphology, thus altering membrane potential, 
respiration, ATP synthesis and reactive oxygen species concentration 
in mitochondria of yeast cells that progress through several 
consecutive stages of the chronological aging process [20]. Such age-
related changes in mitochondrial functionality of yeast treated with 
LCA transform mitochondria into a signaling platform that drives a 
stepwise establishment of an aging-delaying transcriptional program 
for many nuclear genes; this transcriptional program is under control 
of the transcriptional factors Rtg1/Rtg2/Rtg3, Sfp1, Aft1, Yap1, Msn2/
Msn4, Skn7 and Hog1 [21]. 

Importantly, our studies have provided evidence that LCA not 
only slows yeast chronological aging, but also selectively kills cultured 
human cells of neuroblastoma, glioma, prostate and breast cancers 
[22-24]. 

In a recent screen of a library of Plant Extracts (PEs), we have 
discovered 6 PEs that delay yeast chronological aging more efficiently 
that any aging-delaying chemical compound currently known [25]. 
We call these geroprotectors of plant origin PE4, PE5, PE6, PE8, 
PE12 and PE21 [25]. Our studies have revealed that each of these 
6 PEs delays aging in yeast by triggering a hormetic stress response 
and eliciting a distinct kind of changes in certain longevity-defining 
cellular processes [25]. These changes include the following: 1) 
amplified respiration and membrane potential in mitochondria; 2) 
increased or decreased concentrations of reactive oxygen species; 
3) reduced oxidative damage to cellular proteins, membrane lipids, 
and mitochondrial and nuclear genomes; 4) enhanced cell resistance 
to oxidative and thermal stresses; and 5) accelerated degradation of 
neutral lipids deposited in lipid droplets [25]. We provided evidence 
that each of the 6 aging-delaying PEs extends yeast chronological 
lifespan by modulating different hubs, nodes and/or links of the 
nutrient- and energy-sensing network of integrated signaling 
pathways and proteins kinases [26]. The effects of these PEs on the 
network of longevity-defining signaling pathways and proteins kinases 
include the following:1) PE4 weakens the inhibitory effect of the pro-
aging TORC1 (target of rapamycin complex 1) pathway on the anti-
aging SNF1 (sucrose non-fermenting) pathway; 2) PE5 attenuates 
two branches of the pro-aging PKA (protein kinase A) pathway, one 
of which depends on the anti-aging protein kinase Rim15 whereas 
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The budding yeast Saccharomyces cerevisiae is a valuable model for 

uncovering molecular mechanisms of cellular aging in multicellular 
eukaryotic organisms [1-3]. Because of the relatively short and easily 
monitored replicative and chronological lifespans of S. cerevisiae, this 
genetically and biochemically manipulable unicellular eukaryote with 
annotated genome has been successfully used to identify many genes 
shown to play essential roles in cellular aging not only in yeast but 
also in multicellular eukaryotes [2,4,5]. Furthermore, studies in S. 
cerevisiae have discovered a nutrient- and energy-sensing network of 
integrated signaling pathways shown to influence cellular aging and 
define organismal longevity in multicellular eukaryotes across phyla 
[2-5]. Moreover, studies in S. cerevisiae have led to the discovery 
of several chemical compounds that delay cellular aging, extend 
organismal lifespan and health span, and decelerate the onset of 
age-related pathologies in eukaryotic organisms across species [6-8]. 
All these studies have provided convincing evidence that the major 
features of the aging process and mechanisms by which this process 
can be slowed down by some genetic, dietary and pharmacological 
interventions are evolutionarily conserved [1-13].

Our research is aimed at unveiling molecular and cellular 
mechanisms by which certain chemical compounds of mammalian 
or plant origin can delay chronological aging in S. cerevisiae. Using 
a high-throughput chemical genetic screen of several commercially 
available compound libraries, we discovered more than 20 molecules 
that can delay yeast chronological aging and belong to 5 chemical 
groups [14]. One of these groups includes 6 different bile acids. In 
mammals, these amphipathic molecules are either synthesized from 
cholesterol in hepatocytes of the liver or produced by bacteria in 
the colon [15-18]. In contrast, yeast are unable to synthesize bile 
acids [15,16,19]. We demonstrated that the most hydrophobic 
bile acid called Lithocholic Acid (LCA) exhibits the highest aging-
delaying efficiency among the 6 bile acids discovered in our chemical 
genetic screen of chemical compounds capable of decelerating 
chronological aging in yeast [14]. Our studies have revealed the 
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the other branch is Rim15-independent; 3) PE6 stimulates anti-aging 
processes and/or inhibits pro-aging processes that are not integrated 
into the network of signaling pathways/protein kinases; 4) PE8 
weakens the inhibitory effect of the pro-aging PKA pathway on the 
anti-aging SNF1 pathway; 5) PE12 stimulates the anti-aging protein 
kinase Rim15; and 6) PE21 impedes a PKH1/2(Pkb-activating kinase 
homolog)-sensitive form of the pro-aging protein kinase Sch9 [26]. 

The challenge for the future is to investigate whether any of the 
six age-delaying PEs can slow the onset and progression of chronic 
diseases associated with human aging. These aging-associated chronic 
diseases include arthritis, diabetes, heart disease, kidney disease, liver 
dysfunction, sarcopenia, stroke, Parkinson’s neurodegenerative 
disease, Alzheimer’s neurodegenerative disease, Huntington’s 
neurodegenerative disease, and many forms of cancer.
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