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Abstract

In this mini-review, the general paradigm used for Statistical Learning (SL) 
was traced and the main theoretical debate of brain modular vs. centralized 
processing was introduced, mainly from the evidence of multisensory interaction 
that is documented in the literature. Moreover, the time course of SL has been 
concisely delineated. Finally, a survey of the neuronal exploration of SL was 
given, although the endeavor in revealing neural mechanism is insufficient so 
far. 
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particular to the domain in question [12-14]. However, it has been 
widely observed various domains and many sorts of species that 
could attune to probabilistic patterns in the environment [15-18] 
suggesting a supra-modal representation of SL from phylogenetic 
perspective. To resolve this debate, people usually investigate 
whether there is a transfer of learning (benefits) from one stimulus 
set to another, independent of perceptual features of the stimuli or 
the sensory modality. For example, whether there is a transfer from 
the dimension (visual shapes) to another dimension (auditory pitch), 
namely cross-modally. Alternatively, one may examine how the cross-
modal relationships influence simultaneous learning of multimodal 
input streams. For the latter, Seitz et al. [19] found statistical learning 
is a modality-independence process in which observers could extract 
concurrent, multiple (auditory vs. visual) statistical patterns equally, 
supporting the view of modular (modality-independence) processing 
[19]. In contrast, Mitchel and Weiss [6] presented both auditory 
and visual streams simultaneously or asynchronously, with variable 
predictability (transitional probabilities) between audio and visual 
elements and asked the observers to segment the boundaries of the 
audio and visual triplets (Figure 1). The results suggest that learners 
were able to extract multiple statistical regularities across modalities 
provided that there is some degree of cross-modal coherence [6], 
favoring a supra-modal abstract representation.

Most recently, Mitchel et al. accounted (auditory) statistical 
learning with modality-interactive mechanism by employing the 
perception of McGurk illusion [20]. In McGurk task, concurrent 
incongruous visual information (lip movements) biases the auditory 
perception of speech. Mitchel et al. [20] demonstrated the perception 
of audiovisual illusory syllables, acquiring from statistical leanring, 
altered the auditory stream structure and thus facilitated participants’ 
ability to segment the speech stream.

Introduction
As active learners, we rely on a combination of experience-

independent and experience-dependent mechanisms to extract 
information from the environment. Statistical Learning (SL) 
has been studied as a mechanism by which people automatically 
discover patterns in the environment through experience. SL starts 
remarkably early in the progress of human life-span development. 
For instance, 8-month-old infants are capable of extracting serial-
order information after only 2 min of listening experience [1].

It is the brain’s capacity to detect statistical regularities in the 
environment, by operating complex perceptual and cognitive 
manipulations to obtain object recognition [2,3], event identification 
[4-7], and even language acquisition [8,9]. The information of 
the sensory events is usually presented sequentially, given by a 
specific sensory modality or a combination of modalities (such as 
auditory and visual modalities). The efficiency of SL differs among 
different sensory modalities. In general, auditory modality displays 
a quantitative learning advantage compared with vision and touch 
[4,5]. The disparities in sensory processing have been commonly 
recognized as sensory dominance ever since 1980 [10]. To substantiate 
the sensory dominance/difference in SL, a paradigm of artificial 
grammar has been developed and applied extensively in a large body 
of experimental explorations. A typical procedure of experiment goes 
as follows: observers are required to make ‘match’ or ‘mismatch’ 
discrimination of the two presented stimuli sequences (both are 
visual, auditory or tactile sequences), in which the presentation 
orders of spatial locations for a visual square, or the pitches of an 
auditory sequence containing multiple beeps were aligned by the 
given predefined grammar. Using the artificial grammar protocol, 
a number of studies have demonstrated that the auditory modality 
appears to have an advantage in the processing of sequential input, 
including low-level temporal processing tasks and pattern or rhythm 
discrimination, while touch modality is adept at processing both 
sequential and spatial input, though it is not at the same level of 
proficiency as either audition or vision [4-6,11].

Supra-modal or modular processing?
A central debate in SL concerns whether learners encode the 

regularities with an abstract or stimulus-specific representation. 
Modular theories hypothesize that SL is accomplished by mechanisms 
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Figure 1: Stimuli pattern adapted from Mitchel and Weiss [6]. Two sequences 
of auditory music tones and artificial visual figures were presented. The 
correspondence of each tone and figure is manipulated to the predefined 
artificial grammar.
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Developmental evidence and individual approaches
To delineate the time course of development, Hupp and Sloutsky 

[21] investigated the development of (cross-modal) transfer between 
8 and 16 months of age 8- and 16-month-olds were trained to attend 
to the end of a visual stimuli sequence (in a same modality). They were 
then tested on novel visual sequences. Results indicated transfer of 
learning, with both groups changing baseline preferences (i.e., looking 
times) as a result of training. In a separate experiment, participants 
were trained to attend to the end of a visual sequence while were 
tested on an auditory sequence. In difference to experiment 1, only 
older observers showed transfer of learning by changing baseline 
preferences (i.e., looking time at the targets). It suggest that the the 
generalization of learning, especially cross-modally, is improved 
within a critical period between 8 and 16 months [21].

Recently, research on SL has focused on individual differences 
by recruiting atypical developing groups. Mayo and Eigsti [22] 
found that High Functioning Children with Autism (HFA) and 
Typical Developing (TD) groups were equally able to implicitly learn 
transitional probabilities from a lengthy stimulus stream, and the task 
performance was not strongly associated with their current language 
abilities [22].

Neural evidence for SL
In contrast to the ample behavioral evidence of SL, the neural 

exploration of SL is relatively scarce. To determine the time course 
and neural processes involved in online word segmentation and SL 
of visual sequence, Abla and Okanoya [23] recorded Event-Related 
Potentials (ERPs) while participants were exposed to continuous 
sequences with elements organized into shape-words randomly 
connected to each other. The participants were divided into two 
groups (high and low learners) based on their behavioral performance 
(three sessions of training, with each session of 6 minutes). Grand-
averaged ERPs showed that triplet-onset (the initial shapes of shape-
words) elicited larger N400 amplitudes than did middle and final 
shapes embedded in continuous streams during the early learning 
sessions of high learners, but no triplet-onset effect was found among 
low learners. The results suggested that the N400 effect severed as a 
neural signature for online segmentation of the visual sequence and 
the degree of SL [23].

Paraskevopoulos et al. [24] assessed the effect of musical training 
in SL of tone sequences using Magneto Encephalography (MEG). 
MEG recordings were used to investigate the neural and functional 
correlates of the pre-attentive ability for detection of deviance, from 
a statistically learned tone sequence. Both normal and musicians 
groups revealed a significant difference between the standards and 
the deviants in the response of P50. However, this difference was 
significantly larger for the group of musicians. The results indicates 
that a long term exercise can enhance the ability of the auditory 
cortex to discriminate new auditory events from previously learned 
ones according to transitional probabilities [24].

Conclusion
In conclusion, statistical learning is of primary importance to 

humans as well as higher-order organisms and remains a vibrant topic 
in experimental psychology. The debate of ‘modality-dependency’ has 
not been fully resolved. The deep investigations into the underlying 

neural mechanism/representations of SL, especially from the lifespan 
development perspective [25], would help to capture as well as 
describe how efficiency human observers cope adaptively with the 
changing multisensory environment.
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