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Abstract

Despite numerous discoveries based on genome wide association 
studies of common variants, the heritability of most complex traits remains 
largely unexplained. Rare variants may play a significant role in disease risk 
and phenotypic variation. Such variants are known to be associated with 
mendelian disorders and rare forms of common diseases. They are also 
known to be associated with complex diseases. Dramatic advances in DNA 
sequencing technologies have enabled a more comprehensive evaluation of 
the full spectrum of genetic variation and now enable us to evaluate the role 
of low frequency and rare variation in complex traits. In this review, I provide 
an overview of the various methods that are available for testing simultaneous 
association of multiple rare variants with disease or any other phenotypes in 
the context of sequencing based association studies. The tests focus on rare 
variation from a particular genomic region such as a gene and its surrounding 
regions. I discuss the basic underlying ideas behind many currently available 
approaches for region-based association testing of rare variants as well as their 
advantages and limitations.
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Introduction
Common Disease Common Variant hypothesis (CDCV) has 

been a main driver of numerous Genome Wide Association Studies 
(GWASs) in the last decade [1]. The CDCV hypothesis asserts that 
common diseases are caused by common variants (frequency > 5%) 
with low to modest effects [2-5]. The studies of such variants have led 
to a large number of discoveries [6] and have yielded valuable insights 
into the genetic basis of complex phenotypes [7-12]. Despite these 
discoveries, for most complex traits, a large fraction of the genetic 
contribution as would be expected from heritability estimates (e.g. 
from twin studies) remains unexplained. For example, for Type 2 
Diabetes and Crohn’s disease even with sample sizes of association 
studies reaching a range of > 100,000, all the current discoveries taken 
together can only explain ~11% and ~23% of the respectively of the 
heritability. This so called “missing heritability” problem has received 
a great deal of attention in the recent times and several explanations 
[13,14] have been formulated to account for the rest of the genetic 
contribution to disease and complex traits. If heritability estimates 
available are accurate, then the missing genetic contribution could be 
in the form of variation that has not been as extensively investigated 
as common variation. Because of the CDCV hypothesis, GWASs have 
focused on the identification of common variants with Minor Allele 
Frequency (MAF) larger than 5%; however, the rest of the frequency 
spectrum may contain additional trait-associated variation (e.g. low 
frequency variants MAF in range 1-5% and rare variation MAF < 1%). 

In particular, rare variants can play a significant role in disease 
risk and phenotypic variation. Such variants are known to be 
associated with mendelian disorders and rare forms of common 
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diseases [15]. There is also a growing body of evidence that rare 
variants are associated with complex phenotypes [16-22]. Dramatic 
advances in DNA sequencing technologies now enabled us to 
evaluate the role of low frequency and rare variation in complex 
traits [23-25] High-throughput sequencing technologies can generate 
billions of short reads across the genome at a reasonable cost and have 
made whole-exome and whole-genome sequencing studies feasible. 
Improved sequencing technologies as well as rare-variant genotyping 
chips [26] have led to genome wide scans for detecting rare variant 
associations. These are also referred to as Rare Variants Association 
Studies (RVAS). In [27], sequencing of whole exomes was carried out 
in 3,734 individuals to test for associations with plasma triglyceride 
levels. Carriers of rare loss-of-function mutations in the APOC3 gene 
were found to have 39 percent lower triglyceride levels than non-
carriers, as well as better cholesterol levels. In [28], analysis of rare 
coding variation in 3,871 autism cases and 9,937 ancestry-matched 
or parental controls revealed 22 autosomal genes. In [29], researchers 
sequenced the exomes of 2,536 cases with schizophrenia and 2,543 
unrelated controls. Schizophrenia cases had a significantly higher 
rate of rare disruptive mutations in protein-coding schizophrenia 
candidate genes.

In contrast to common variants, the detection and subsequent 
association testing with rare variants presents many challenges. 
Firstly, large sample sizes are needed simply to observe a rare variant 
in the sample. Secondly, the standard single-variant association 
tests designed for common variants are underpowered when used 
for finding rare variant associations. Because deep whole genome 
sequencing of large sample sizes is currently cost prohibitive, the first 
issue can be solved by alternate strategies such as targeted sequencing 
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[30], exome sequencing [31], extreme-phenotype sampling [32-35] 
and low-coverage sequencing [36,37]. To address the power issue, 
numerous region-based multi-marker tests have been proposed in the 
last several years [38,39]. In this review, I provide an overview of the 
various methods that are available for testing simultaneous association 
of multiple rare variants with disease or any other phenotypes in the 
context of sequencing based association studies. The tests focus on 
rare variation from a particular genomic region such as a gene and 
its surrounding regions. I discuss the basic underlying ideas behind 
many currently available approaches for region-based association 
testing of rare variants as well as their advantages and limitations. 

Methods for association analysis of rare variants
In the classical single-variant association testing, linear or logistic 

regression is used for association testing and a genome wide p value 
threshold of 5 x 10-8 is used to account for multiple testing correction 
(1 million independent tests) [40]. Regression-based approaches allow 
us to easily adjust for covariates. For the same effect size, the power 
to detect association with a rare variant is expected to be smaller than 
for common variants [39]. The sample size needed to achieve over 
80% power with rare variants is at least an order magnitude higher 
than common variants. Furthermore, because the total number of 
rare variants across the genome is also larger than common variants, 
correction for multiple testing will further reduce power in this case. 
Region-based tests of association seek to aggregate cumulative effects 
of multiple genetic variants in a gene or region instead of testing each 
variant individually. When many variants from a relevant gene or 
genomic region are associated with a complex trait, they may increase 
the power to detect such associations. Instead of testing millions of 
rare variants, we can test ~20,000 or so gene regions and this can 
help reduce the multiple testing burdens. Methods for rare variant 
association analysis can be classified into 4 major categories: burden 
tests, variance component tests, combined burden and variance-
component tests and the exponential-combination test.

Burden tests
The main idea behind burden tests is to collapse information for 

multiple genetic variants into a single variable and test for associations 
between this variable and disease status [41-46]. There are many 
ways to combine the information from multiple genetic variants into 
a single score such as counting the number of minor alleles for all 
variants and weighting them to get a composite score. The weights can 
be based on minor allele frequency as well as functional information 
based on where a particular variant is located in the genome. These 
different methods are based on different assumptions about disease 
mechanism. In general, burden tests make strong assumptions that 
all the variants in a set are causal and have same direction and effect 
size. When a large proportion of variants are indeed causal and have 
same direction of effect, such tests can be powerful. Violation of these 
assumptions can lead to loss of power [47-49].

Adaptive burden tests [50-55] are refinements to the original 
burden tests idea that allow for variants to have effects in both 
directions. They are more robust than original burden tests because 
they make fewer assumptions about the underlying genetic model 
at each locus. At the same time, adaptive tests based on regression 
are often difficult and unstable for rare variants and those that make 
use of permutation are computationally intensive. Han et al. [50] 

developed a data-adaptive sum test that first estimates the direction 
of effect for each variant and then uses the estimated directions to 
conduct a burden test. The step-up test [51] refines the procedure 
to use a model-selection framework that assigns zero weight when a 
variant is unlikely to be associated.

Variance-component tests
These types of tests use a random-effects model and construct 

a variance-component test that evaluates the distribution of genetic 
effects for a set of variants. Instead of aggregating variants, these tests 
evaluate the distribution of the aggregated score test statistics. The 
Sequence Kernel Association (SKAT) [56-59], sum of squared score 
test [57] and the C-alpha test [58] are all based on this principle. SKAT 
allows for both covariate adjustment and modeling of interactions 
between variants. The test statistic is a weighted sum of squares of 
individual score statistics and asymptotically follows a mixture chi-
square distribution. The p value can be computed rapidly using 
analytic formulas [60,61]. Variance component tests are powerful 
in the presence of both phenotype-increasing and phenotype-
decreasing variants as well as in cases where only a small proportion 
of the variants are causal. However, these are less powerful than 
burden tests when most variants are causal and have effects are in the 
same direction.

Omnibus tests
Because burden and variance component tests are complementary 

in terms of the scenarios in which they attain high power, it is desirable 
to combine these two approaches. Derkach et al. [62] use Fisher’s 
method [63] to combine the p values of these two tests and make 
use of permutation to evaluate the significance of the test. Another 
approach is to use the data to adaptively combine the SKAT and 
burden test statistics. Lee et al. [64] propose a linear combination of 
SKAT and burden test statistics. An adaptive procedure is used to find 
the optimal way to combine test statistics and p values are calculated 
through one-dimensional numerical integration. Combined tests are 
attractive in practice because they do not assume a particular genetic 
architecture and in most situations we do not have strong priors for 
the underlying genetic model. However, such tests can be slightly less 
powerful than the previous 2 categories of tests when the assumptions 
underlying those tests are satisfied.

Exponential combination tests
In contrast to burden and variance component tests that use 

linear or quadratic combination of score statistics, this test makes 
use of an exponential sum of the score statistics [65]. The test statistic 
is developed under a Bayesian framework with a sparse alternative 
prior with the assumption that only one variant in a genomic region 
is causal. The significance of the test is determined through the use 
of permutations. Because the exponential function increases rapidly, 
the exponential-combination test can have higher power when only a 
small proportion of the variants are causal but becomes less powerful 
when moderate or large proportions of variants are causal. Because 
the null distribution of the test statistic is unknown, permutations are 
used to obtain p values, making the test computationally intensive.

Relative performance: power and type 1 error rates
Although numerous rare-variant association methods have been 

proposed, a comprehensive comparison of their performance in 
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terms of power and false positive rates had been lacking until recently. 
Dering et al. [66] compared 15 conceptually different rare-variant 
association methods using simulation data for Genetic Analysis 
Workshop17 [67] as well as empirical data investigating methotrexate 
clearance in Acute Lymphoblastic Leukemia (ALL) diseased children 
[68]. The results of testing these 15 approaches [42-48,50,53,54,56,69-
71] indicated that unexpectedly, many of proposed rare-variant 
association testing approaches have substantially inflated Type 1 
error rates. Specifically, only methods proposed in [47,53,54,70] had 
valid Type 1 error rates for all the simulation scenarios considered 
in that study. Among all the tests with valid false positive rate, the 
method proposed in [47] had the largest power in the 4 scenarios that 
were investigated in the simulations. Findings from the empirical 
dataset were consistent with the comparisons from simulation study. 
Both simulations and analysis of real data showed that the power of 
collapsing based methods heavilyrelieson the proportion of causal 
variants in the region of interest [72]. Furthermore, not all of these 
approaches allow for covariate adjustment and methods assuming 
only a genetic effect may be at disadvantage when phenotype is 
influenced by covariates. 

In conclusion, the study of the association of rare variants or 
groups of rare-variants is likely to be a major focus of future genetic 
association studies as we try to better understand the genetic basis of 
complex traits. The function of a gene can be altered by mutations in 
many different positions and all of these can influence the phenotype. 
Genes rarely work in isolation and multiple rare variants occurring 
in different genes that are part of a biological pathway can together 
affect phenotype expression. This motivates the development of valid 
tests that can look at the collective association of rare (and possibly 
common) variation in genes and biological pathways and such tests 
can also enhance power as compared to single variant analyses. In 
general, the analysis of rare variants is complicated by low power, lack 
of knowledge of the underlying genetic model as well as the difficulty 
of calling rare genotypes. Prior information about the functional 
importance of a variant site as derived from computational prediction 
tools and biological knowledge can guide the choice of regions of 
interest to detect truer are variant associations. Irrespective of the 
method used, studies with small to moderate sample sizes are likely 
to suffer from lack of power. Even when sufficiently large sample sizes 
are available, rare-variant association testing methods that rely on 
permutations require huge computational effort making them less 
appealing in practice as compared to other valid asymptotic methods.
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