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Abstract

Most conventional methods of comparing two diagnostic tests require 
patients whose true disease statuses are known. We deal with in this paper 
a problem of comparing two binary diagnostic tests (referred to as new and 
standard tests) in a follow-up design, where there are no gold standards. Assume 
that each patient is examined twice by new and standard tests, respectively. We 
employed a comparison measure Ψ, which is compared on the basis of the odds 
ratio of the new and standard test. It is not possible to estimate Ψ from the full 
likelihood function based on the design, even if two independent multinomial 
distributions are assumed to the data. Therefore, we focus only on data from 
discordant pairs between new and standard tests. We construct conditional 
likelihood conditioned on those pairs and estimate parameters involved in the 
conditional likelihood. An estimate of Ψ is obtained by plugging those estimates 
in Ψ. The asymptotic normality of the estimator of Ψ is shown based on delta 
method and a confidence interval of Ψ is developed. A method of sample size 
determination for this design is also proposed. Simulation is conducted to study 
the behavior of the proposed method by considering several scenarios.

Keywords: Follow-up design; Diagnostic test; Comparison; No gold 
standard

Introduction
Accurate diagnosis of the patient is crucial when planning the 

treatment of a disease. After determining the accurate diagnosis has 
been determined, the patient can begin receiving adequate treatment. 
An accurate evaluation and selection of the diagnostic method plays 
an important role in the patients’ health. A medical method that aims 
at determining whether a patient is affected by a disease is called a 
‘’diagnostic test”. Particularly, diagnostic tests that evaluate the 
strength of suspicion of certain diseases on binary (‘’positive” and 
‘’negative”) are called ‘’binary diagnostic tests”.  To determine which of 
the two binary diagnostic tests is statistically better, the sensitivity and 
specificity must be closely examined [1,2]. Sensitivity and specificity 
are defined by the following equation: Sensitivity = Pr (T=1|D=1), 
Specificity = Pr (T=0|D=0), Where T indicates the diagnostic results 
according to the binary diagnostic test, and D indicates the actual 
condition of the disease. The T (D)=1 indicates positivity (disease), 
and 0 indicates negativity (not disease). Sensitivity is the conditional 
probability for patients who are actually disease to be diagnosed as 
positive, and specificity is the conditional probability for patients 
who are not actually disease to be diagnosed as negative. In both 
cases, values closer to 1 mean that the diagnostic test is accurate. 
If an observation of each patient’s actual disease condition (D) is 
conducted, the sensitivity and specificity can be estimated simply by 
calculating the proportion.

However, an accurate observation of the value of D involves 
methods that are often invasive for the patient. In the case of cancers, 
for example, the value of D can be assessed only by collecting cell 
samples through biopsy or surgery, and by determining the diagnosis 
in a comprehensive manner by using pathological and histological 
methods.
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An example of an actual test is that of Berg et al. [3], who 
performed biopsy in patients with elevated risks of breast cancer 
for the determination of a definitive diagnosis, to examine whether 
‘’mammography alone” and ‘’mammography combined with 
ultrasound” was effective as diagnostic tests for breast cancer 
detection. Similarly, in Japan, a large-scale randomized controlled 
trial of breast cancer screening methods (mammography alone vs. 
mammography combined with ultrasound) is being conducted on 
100,000 women in their 40s [4]. In this study, the definitive diagnosis 
was determined on the basis of biopsy or surgery for patients whose 
overall screening results indicated a need for thorough examination. 
These examples involve two important issues. In other words, when 
sensitivity and specificity are evaluated directly for comparison, then 
information related to the definitive diagnosis is required, and the 
problem is that this imposes a huge burden both on the patient and 
on the health care workers.

Therefore, in this paper, we propose a methodology for the 
comparison of two binary diagnostic tests (referred to hereinafter as 
‘’new test” and ‘’standard test”) in the absence of a definitive diagnosis, 
and discuss the follow-up design by using the said methodology. The 
characteristic of this method is that each patient was twice subjected 
to the new test and the standard test, respectively, both for a short 
period and focus was given to findings in which discordant results 
were obtained from the new and standard tests. This research paper 
comprises the following: Section 2 summarizes the criteria considered 
while comparing the two diagnostic tests; Section 3, we propose the 
methodology; Section 4, numerical simulations are performed using 
several scenarios; Section 5, a discussion is provided.

Comparison measure
TN,TS ∈{0,1} are random variables representing the results of the 
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diagnosis according to the two binary diagnostic tests, namely the new 
test and the standard test. Murotani et al. [5] previously summarized 
the criteria for comparing the standard test and the new test as (C1), 
(C2), (C3), (C4) as follows:

(C1) Pr(TN=1 |D=1) > Pr(TS=1 |D=1) and Pr(TN=0 |D=0) > 
Pr(TS=0 |D=0),

(C2) Pr(D=1 |TN=1) > Pr(D=1 |TS=1) and Pr(D=0 |TN=1) > 
Pr(D=0 |TS=0),

(C3) Pr(TN=1 |D=1) + Pr(TN=1 |D=1) > Pr(TS=1 |D=1) + Pr(TS=0 
|D=0), and

( ) ( ) ( )
( ) ( )

N N

N N

Pr T 1| D=1 Pr T 0 | D=0
C4

Pr T 0 | D=1 Pr T 1| D=0
= =

>
= =

( ) ( )
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Pr T 0 | D=1 Pr T 1| D=0
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= =

(C1) is compared on the basis of the sensitivity and specificity. 
In (C1) and (C2), the conditions are reversed. In other words, 
comparison was made on the basis of the probability for the patients 
actual condition to be ‘’presence of disease” (‘’absence of disease”) 
when (C2) was diagnosed as positive (negative). Therefore, the 
diagnostic tests were compared on the basis of their capability to 
predict the diagnosis. (C3) was compared on the basis of the size 
of the sum of sensitivity and specificity. This is the equivalent to 
selecting a diagnostic test with a large Area under the Curve (AUC). 
(C4) was compared on the basis of the odds ratio of the new test and 
standard test.

The meanings of the (C4) criteria were as follows: When TN was 
TN=1, the predictive capacity was expressed as follows:

O1=Pr(D=1 |TN=1)/Pr(D=0|TN=1).

When TN was TN=0, the predictive capacity was expressed as 
follows:

O2=Pr(D=0 |TN=0)/Pr(D=1|TN=0). 

The larger the predictive value of TN=1, the greater the value of 
O1. The larger the predictive value of TN=0, the greater the value of 
O2; in other words, the lower the value of O2

-1. Therefore, the ratio 
of the two (O1/O2) expresses the strength of the relationship between 
the new test and D. Higher values of the ratio would indicate that the 
new test is a good diagnostic test. Similarly, the standard test was also 
defined by the odds ratio, and the (C4) of the new test was compared 
with that of the standard test on the basis of the meaning of the odds 
ratio. In this paper, the diagnostic tests were compared on the basis of 
the meaning of (C4).

The parameters summarizing the (C4) criteria are defined by the 
following equation:

( ) ( )
( ) ( )
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.
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= =
= =

According to the (C4) criteria, the following interpretations can 
be made, depending on the value of Ψ: {Ψ >1 if TN is superior to TS; Ψ 
=1 if TN and TS are equal; Ψ <1 is inferior to TS.

Thus, Ψ is a criterion for the comparison of the two diagnostic 
tests.

If Ψ can be estimated on the basis of the data, then the two binary 
diagnostic tests can be compared on the basis of the estimated value. 

In addition, if the distribution associated with the estimator of Ψ can 
be calculated, then a hypothesis testing pertaining to Ψ as well as the 
estimation of the confidence interval can also be conducted, and a 
follow-up design for the comparison of two binary diagnostic tests, 
including the planning of the number of cases, can be proposed. In 
the absence of definitive diagnosis (in the absence of observation of 
D), and on the basis of the data obtained by application of the new test 
and the standard test twice on each patient, the estimate of Ψ and its 
asymptotic distribution were calculated under several assumptions. 
From the next section, we discuss the methodology in concrete terms.

Methodology
Notation and definition

{TNij(TSij), j=1,2,…,n}was a random variable representing the 
diagnostic results of the new test (standard test) that the i patient 
underwent for the jth time; {Di,i=1,2,…,n} was a random variable 
representing the actual status of the ith individual’s disease. This 
implies that Di does not depend on j, but the actual status of the 
disease remained unchanged at the time of the first and second 
application of the new test and the standard test. This can be ensured 
by applying the two diagnostic tests in a relatively short period, during 
which the actual condition of the disease remains unchanged. Di is a 
non-observed random variable. TNij,TSij, and Di are binary random 
variables in which 1 means positive (disease) and 0 means negative 
(not disease). In addition, it was assumed that p=Pr(Di=1) for all i.

The value p represents the prevalence rate. If {εNij,εSij} are considered 
as instances of TNij,TSij, the data obtained from the application of 
the new test and standard test twice to n patients without definitive 
diagnosis are expressed as 1 1 2 2( , , , ), 1, 2,..., .Ni Si Ni Si i nε ε ε ε =

The cell probability pikl was ik Nij Sijp Pr(T k,T ), k, {0,1}l = = = ∈  . In 
addition, regarding pikl, if the actual condition of the disease is known, 
then Dk i Nij Sijq Pr(T k,T | D=1)l = = =  , 

and ( )Nij SijDkliq Pr T =k,T = |D=0l=  for i,j,k and l. Here, ik Dk i Dk ip ,q ,ql l l  were 
independent of j, but this meant that the cell probability remained 
unchanged in both the first and the second diagnostic results.

Design based approach
In this section, we consider the probability distribution on the 

basis of the method of extraction of individuals and to construct the 
likelihood. The new and standard tests, respectively, were applied 
twice on the ith patient, and therefore, the jth j=1,2 diagnostic results 
can be summarized in 2×2 contingency tables. When the two-
dimensional random variable representing the diagnostic results 
obtained at the time when the new and standard tests were applied 
on the th patient (TNi1,TSi1), and the second diagnostic results of 
the new and standard tests (TNi2,TSi2) follow a mutually independent 
multinomial distribution, the likelihood for the th patient can be 
expressed in the following equation:

( )( ) ( ) ( )1 1 1 1 1 1 1 11 1 1 1
i00 i01 i10 i11P P P PNi Si Ni Si Ni Si Ni Siε ε ε ε ε ε ε ε− − − −

( )( ) ( ) ( )2 2 2 2 2 2 2 21 1 1 1
i00 i01 i10 i11P P P P .Ni Si Ni Si Ni Si Ni Siε ε ε ε ε ε ε ε− − − −×

In addition, because the actual status of the disease is unknown, 
the cell probability pikl will be the mixture probability of the mixing 
ratio p, as represented by ( )ik Dk i Dk ip pq 1 p ql l l= + − . In summary, the 
overall likelihood function (L) of n patients is provided as follows: 

( ) ( )
( ) ( )

N N

N N

Pr T 1| D=1 Pr T 0 | D=0
=

Pr T 0 | D=1 Pr T 1| D=0
ψ

= =
= =
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Here qD10i qD01i/qD01i qD10i, does not depend on {i,j} and the results 
of the new and standard test are mutually independent when 
conditioned with the actual disease status, Ψ can be expressed by the 
following equation.

10 01

01 10

= .D i D i

D i D i

q q
q q

ψ

When Ψ is estimated based on the overall likelihood L, it is 
important to know whether L is an exponential family. If L is an 
exponential family, then it is sufficient estimated on the basis of 
the conditional likelihood of Ψ when sufficient sample statistics 
on nuisance parameters other than Ψ are conditioned? However, 
unfortunately, L is not an exponential family. Therefore, it is difficult 
to estimate the Ψ.

Conditional approach
When the overall likelihood is constructed by assuming the 

multinomial distribution estimated on the basis of the design, the cell 
probability will be the mixture probabilities of the not diseased group 
and that of the diseased group where the prevalence is a mixing ratio. 
Thus, the overall likelihood was not an exponential family, and it was 
not possible to estimate Ψ based on sufficient statistics. In this section, 
we limit the data to those used in the analysis, and propose a new 
approach composed of conditional likelihood functions.

First, we assume the following (E1):

(E1) The data, in which the results of the new test and standard 
test were consistent with each other, are not related to the comparison 
of diagnostic tests.

If (E1) is expressed in other words, it insists on the fact that at 
the time of the analysis, there is no need to take into consideration 
the data in which the new test and standard test produced the same 
results. Based on an assumption (E1), considerations are only given 
to the pairs of data in which the diagnostic results differed from each 
other (discordant pairs) in the new test and standard test. Therefore, 
the following sets of A, B1 and B2 are defined depending on the 
number of times the new test and standard test.

A={i: (TNi1,TSi1, TNi2, TSi2)= (0,1,0,1),(0,1,1,0),(1,0,0,1),(1,0,1,0)},

B1={i: (TNi1,TSi1, TNi2, TSi2)= (0,1,1,0),(0,1,0,0),(1,0,1,1),(1,0,0,0)},

B2={i: (TNi1,TSi1, TNi2, TSi2)= (1,1,0,1),(0,0,0,1),(1,1,1,0),(0,0,1,0)}.

“A” represented a set of individuals in whom the results of the 
new test and standard test differed from each other, both the first time 
and the second time they were conducted. B1 (B2) represents a set of 
individuals in whom the results of the ‘new test’ and ‘standard test’ 
differed from each other the first time (the second time) they were 
conducted.

For A∪B1∪B2, 
*Tij′  is defined by the following equation.

Nij Sij*

Nij Sij

1 if(T ,T )=(1,0)
T , j =1,2.,

0 if(T ,T )=(0,1)ij
′ ′

′
′ ′


′= 


 

where

( ) Nij Sij*
ij

Nij Sij Nij Sij

Pr(T 1,T 0)
Pr T 1 ,

Pr(T 1,T 0) Pr(T 0,T 1)
′ ′

′
′ ′ ′ ′

= =
= =

= = + = =

( )* *Pr T 1 1 Pr( 0).ij ijT′ ′= = − =    (1)

For i∈A, the observed values of * * * *
1 2 1 2,  are ( , ).i i i iT T ε ε In the same 

manner, for i∈B1, the observed value of 
1

* *
1 2 is ,  for i Bi iBT ε ∈ , the 

observed value of 
2

* *
2  is .i iBT ε  In addition, for the ith individual, Mi is 

defined as Mi=2 for i∈A, and as Mi=1 for i∈B1∈B2. In addition, (A1), 
(A2), (A3) are assumed as follows:

* * * *
i1 i1 i2 i2 i i(A1)i A,Pr(T = ,T = D = )=ε ε ε∈

2
* *

1

Pr(T ),ij' ij' i i
j'

Dε ε
=

= =∏

* *
i i(A2) Pr(T =1 D =1), =Pr(T =0 D =0),ij' ij'α β= 1 2j =1,2, i A B B ,′ ∈ ∪ ∪  and

1 2

* * * *
i1 i2 iB 1 iB 2(A3)(T ,T ), i A,T ,i B ,T ,i B∈ ∈ ∈  are mutually independent.

(A1) assumes that for the ith individual, * *
1 2,i iT T  are mutually 

independent under the actual status of the disease. Assumptions 
similar to this have previously been used by Hui and Walter [6] and 
Yanagawa and Kasagi [7], and are commonly known as conditional 
independence. Because this assumption is somewhat strong, Vacek 
[8] and Torrance-Rynard and Walter [9] have examined the effect 
of the divergence from the assumption on the estimation of the 
sensitivity and specificity.

(A2) assumes that from the perspective of *
ijT ′  the sensitivity and 

specificity is constant, and does not depend on i or j. (A3) assumes that 
each individual is independent of the other individuals. The following 
important relationship exists between  and the two parameters α and 
β.

.
(1- )(1- )

αβψ
α β

=      
      (2)

This relational equation shows that the conditional maximum 
likelihood estimator of Ψ can be obtained if α and β, which maximize 
Lc are plugged in into the right side of (2). Under (A1), (A2) and (A3), 
the conditional likelihood function Lc is provided by the following 
equation (Appendix 1):

 { }* * * * * * * *
1 2 1 2 1 2 1 2

cL ( , , ) (1 )(1 ) (1 )i i i i i i i i i iM M

i A

p p pε ε ε ε ε ε ε εα β β β α α+ − − + − −

∈

= − − + −∏

 
{ }* * * *

1 1 1 1

1

(1 )(1 ) (1 )iB i iB iB i iBM M

i B

p pε ε ε εβ β α α− −

∈

× − − + −∏

 
{ }* * * *

2 2 2 2

2

(1 )(1 ) (1 ) .iB i iB iB i iBM M

i B

p pε ε ε εβ β α α− −

∈

× − − + −∏
 (3)

Asymptotic distribution
The α and β, which maximize the Lc are termed ˆˆ  and .α β  Under 

such circumstances, the plug-in estimator of Ψ is provided by the 
following equation:



( )( )
ˆˆ

.
ˆˆ1 1

αβψ
α β

=
− −

( )Var logψ  is referred to as VΨ. When actually calculated, the VΨ is 
a asymptotically given by the following equation.

( )
21 1 1V Var ( )

1
n

nψ
α α

α α
 ≈ + − + − 

( )
2

1 1 Var ( )
1

n β β
β β

 
+ − − 

1 1 1 12
1 1α α β β

  + + +  − −  
 ( )}Cov ( ), ( ) .n nα α β β− −  

When the asymptotic normality of ˆˆ ,α β  and the delta method are 
used 

Llog N(log ,V ),ψψ ψ→ as n→∞ can be derived (Appendix 2), where →L 
shows a convergence in law.
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Using an asymptotic distribution, the 95% confidence interval of 
Ψ is given by the following equation:

 ( )exp log 1.96 Vψψ ψ− ≤  ( )exp log 1.96 V .ψψ≤ +

Follow-up design
In the previous section, the estimator and asymptotic distribution 

of Ψ, which was used as an index for the comparison of two binary 
diagnostic tests, were calculated by focusing on the discordant pairs 
in the data obtained by applying diagnostic tests twice on patients 
without definite diagnosis. Here, we would like to describe the design 
of follow-up trial for the comparison of diagnostic tests using Ψ as 
a primary endpoint. To design a trial, a known distribution of the 
primary endpoint is required.

The   ( )log  follows log N log ,Vψψ ψ ψ
 asymptotically, and the tested 

hypothesis is the following: H0: logΨ=0 vs. H0: logΨ≠0. This is the 
framework of a standard single-arm trial. If the values of logΨ and VΨ, 
and the level of significance and power are fixed, then the sample size 
needed for the detection of differences will be determined. However, 
because VΨ is a quantity, which is difficult to understand intuitively, 
it can be predicted that VΨ may be difficult to estimate during the 
design phase. To prevent this, we propose that the trial be started 
without determining VΨ, and that VΨ is estimated at a time when an 
n0 number of individuals have been accumulated after the beginning 
of the trial, and that the sample size needed for the detection of the 
differences be designed by using the estimate of variance. The order of 
the VΨ can be evaluated according to the following equation:

p
1V o ,  as n ,A

n nψ
 = + →∞ 
 

Where, A is a constant. After the beginning of the trial, an 
estimation of the variance is performed at a time when an n0 number 
of individuals have accumulated, and the resulting value is termed 
VΨ0. In such cases, the variance can be estimated according to the 
below equation, at a time when an n1 number of cases have been 
accumulated for an arbitrary n1>n0.

1 0

0

1

V Vn
nψ ψ≈

Based on the above, when considering logΨ1 as the difference 
to detect, Zk as the upper-tail percentage points for the standard 
normal distribution, a as the level of significance, and 1 - b as the 
power, the sample size (n1) needed for the detection of the difference 
with a probability higher than 1 - b can be designed according to the 
following equation,

 ( )
( )

1

2
/2

1 2
1

V
n .

log
a bZ Z ψ

ψ

+
=

Using the approximation of ( )
1 00 1V / V ,n nψ ψ≈  we obtain the 

following equation,
( )

0/2 0
1

1

n V
n .

log
a bZ Z ψ

ψ

+
=

Simulation
Several concrete situations are designed, and the behavior of the 
logψ  according to the proposed method was examined numerically. 

Pr(TN,TS|D=1) and Pr(TN,TS|D=0) as well as the prevalence 
p=Pr(D=1) were put. Here, pattern 1 to pattern 4 was taken into 
account (Table1).

The differences between the patterns depended on 4 combinations 
involving whether the prevalence was high (low), and whether the 
new test was better (worse) than the standard test. In pattern 1, the 
prevalence was low (p=0.05), and the new test inferior to the standard 
test (logΨ < 0). In pattern 2, the prevalence was high (p=0.2), and 
the new test inferior to the standard test (logΨ < 0). In pattern 3, the 
prevalence was low (p=0.05), and the new test superior to the standard 
test (logΨ > 0). In pattern 4, the prevalence was high (p=0.2), and the 
new test superior to the standard test (logΨ > 0). The true values of 
α,β and Ψ were calculated based on (1), (2), and the true conditional 
probability established in Table 1. In pattern 1, for example, α=0.2/
(0.2+0.15)=0.57, β=0.1/(0.1+0.2)=0.67, Ψ=(0.57×0.333)/(1-0.57)×(1-
0.33)=0.67, logΨ=log(0.67)=-0.41. The true values of α,β,Ψ and logΨ 
in other patterns are summarized in Table 2.

For each pattern, data composed of random numbers 
( ){ }1 1 2 2, , , ; 1, 2,...,Ni Si Ni Si i nε ε ε ε =  were generated, a set consisting 

of A, B1 and B2 was formed, and data sets consisting exclusively of 
discordant pairs were generated. Next,   ,   and p α β  maximizing the 
likelihood (3) were calculated; the estimate Ψ was calculated on the 
basis of   ( ) ( )/ 1 1ψ αβ α β= − − ; and logΨ was calculated. The calculation 
was repeated 1,000 times, and the sample mean of the estimates of 
logΨ, Standard Error (SE), bias and Mean Squared Error (MSE) were 
calculated. A bias was defined as a subtraction of the true value from 
the sample mean. In other words, if the bias had a positive value, it 
showed an overestimate, and if it had a negative value, then it showed 
an underestimate. The sample size extracted at the beginning was set 
to n= 500, 1000, 2000, 5000, and 10,000 (Note that this is not the 
number of discordant pairs). All calculations were performed using 
the statistical software R (Ver. 3.1.1). The results were as follows.

In patterns 1 and 2, the new test was bad (true log=  -0.41) the 
prevalence p was p=0.05 in pattern 1 and p = 0.2 in pattern 2. The 
prevalence was the only parameter that showed a difference between 
both the patterns. The results of the estimations are summarized 
in Table 3. Even when $n$ is increased, the bias is not stable in 
pattern 1. Except for n=2000, a slight tendency to overestimate was 
found. On the other hand, the bias in pattern 2 is more unstable 
than that of pattern 1. MSE was lower in pattern 2 than in pattern 
1, and estimations showing better accuracy at high prevalence were 
conducted. Next, we show the results of pattern 3 and pattern 4.

For pattern 3 and pattern 4, the new test was superior to the 
standard test (true log=1.79); and the prevalence p was p=0.05 in 
pattern 3 and p = 0.2 in pattern 4. The accuracy was higher with pattern 
4 than with pattern 3 (i.e. high prevalence leads to the reduction of 
S.E.). In addition, for both patterns 3 and 4, an increase in sample size 

Pr((TN,Ts)ID = 1) Pr((TN,Ts)ID = 0)

Pattern p (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1)

1 0.05 0.1 0.15 0.2 0.55 0.6 0.1 0.2 0.1

2 0.2 0.1 0.15 0.2 0.55 0.6 0.1 0.2 0.1

3 0.05 0.1 0.05 0.15 0.7 0.5 0.2 0.1 0.2

4 0.2 0.1 0.05 0.15 0.7 0.5 0.2 0.1 0.2

Table 1: Combination of the true probability of occurrence and true prevalence.

Pattern α β Ψ Log Ψ

1, 2 0.57 0.33 0.67 -0.41

3, 4 0.75 0.67 6 1.79

Table 2: The true values of  α, β, Ψ and Log Ψ.
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was accompanied by a tendency to averagely underestimate logΨ. The 
numerical results from Tables 3 and 4 are summarized in Figure 1. 
The error bars in the figure show the 95% confidence interval for the 
mean, and the dotted line represents the true value of logΨ. The lower 
half corresponds to patterns 1 and 2, and the upper half corresponds 
to patterns 3 and 4. Triangles show values in case of p=0.05; circles 
show values in case of p=0.2 (Figure 1).

Discussion
In this paper, we propose a parameter Ψ for the comparison of 

diagnostic tests on the basis of data obtained from the application 
of each binary diagnostic test twice in patients with no definitive 
diagnosis. The asymptotic distribution of logΨ was also calculated on 
the basis of conditions in which the data were limited to discordant 
pairs; further, the method for designing the sample size was also 
discussed. The influence of the restricted focus on discordant pairs on 
the estimation results is probably an issue that will need to be evaluated 
in the future. Comparisons with the estimation of logΨ from the 
overall likelihood can be conducted, but when the estimation is based 
on the overall likelihood, then the number of parameters increases 
and application of the diagnostic tests twice in each individual does 
not allow for a sufficient degree of freedom and makes it impossible 
to conduct simultaneous estimation of all parameters. In this way, 
for estimating all parameters, the necessary for application of the 
diagnostic tests for estimating all parameters between the proposed 
method and the overall likelihood based method is different. 
Therefore, a comparison between two approaches is complicated.

The results of the numerical simulation showed an average 
tendency to underestimate when the true value of logΨ was positive. 
The fact that logΨ was positive implied that the conditions were 
more excellent with the new test than with the standard test. From 
a researchers’ perspective, trials can be carried out with certitude 
that the new test is a better diagnostic test than the standard test. 
This is believed to pose no particularly major problem because even 
if the new test is actually good, it can be interpreted as comparing 
conditions in a conservative manner. However, the theoretical 

reasons for underestimating need to be further evaluated. When the 
simulation results were discussed on the basis of the relationship 
with prevalence, the estimations were more highly accurate when 
the prevalence was high than when it was low. When the prevalence 
was high, individuals with D =1 were potentially included in large 
numbers. For such individuals, the accuracy of the estimation of 
parameters (α) conditioned at D =1 was higher, and as a result, the 
accuracy of logΨ was considered to improve.

Our methodology allows designing the necessary number of cases 
at a time when n0 individuals have been accumulated after the start 
of the trial. In such cases, the problematic issue comprises ‘’what the 
value of n0 should be in order to be considered sufficient;” but the 
results of numerical simulations have shown that even in the worst 
case (pattern 3 and n=500), the SE of logΨ was about 0.078. Therefore, 
the evaluation of dispersion might be good if performed at n0=500.

This study was conceived exclusively for patients without a 
definitive diagnosis; however, after the start of the trial, we expected 
that while the trial was underway, the definitive diagnosis of some 
individuals might be determined. With the current methodology, 
there is no other choice but to conduct analyses by treating such 

Pattern 1 (p= 0.05) Pattern 2 (p= 0.20)

n mean s. e. bias MSE mean s.e. bias MSE

500 -0.493 0.022 -0.088 1.094 -0.462 0.019 -0.056 11808

1000 -509 0.021 -0.103 0.997 -0.392 0.018 1014 0.7

2000 -0.384 0.021 0.021 0.949 -0.421 0.016 -0.016 0.586

5000 -11409 0.019 -0.003 0.78 -0.342 0.015 0.063 0.48

10000 -0.427 0.017 -0.021 0.67 -0.348 0.013 0.057 395

Table 3: Results of the simulation of pattern I and pattern 2.

n
Pattern 3 (p = 0.05) Pattern 4 (p=0.20)

mean s. e. bias MSE mean s.e. bias MSE

500 2.312 0.078 0.52 0.437 1.824 0.036 0.033 0.037

1000 1.993 0.042 0.201 0.088 1.68 0.024 -0.112 0.028

2000 1.659 0.026 -0.133 0.037 1.571 0.017 -0.22 0.056

5000 1.567 0.02 -0.225 0.062 1.515 0.011 -0.277 0.08

10000 1320 0.016 -0.272 0.081 131.4 11008 -0.278 0.079

Table 4: Results of the simulation of pattern 3 and pattern 4.

Figure 1: Sample mean and 95%confidence interval of the estimated values 
of log  in each Pattern.
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individuals in the same manner as those whose definitive diagnosis 
has not yet been determined are treated. However, it is also beneficial 
to estimate information pertaining to the definitive diagnosis in 
mid-course of the trial and to develop a methodology allowing 
for estimation that is more accurate. This issue will be the topic of 
another paper.
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