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Abstract

Obesity is a complex health outcome that is a combination of multiple health 
indicators. Here we attempt to explore the dependence network among multiple 
aspects of obesity. Two longitudinal cohort studies across multiple decades 
have been used. The concept of causality is defined similar to Granger causality 
among multiple time series, however, modified to accommodate multivariate 
time series as the nodes of the network. Our analysis reveals relatively central 
position of physical measurements and blood chemistry measures in the overall 
network across both genders. Also there are some patterns specific to only male 
or female population. The geometry of the causality network is expected to help 
in our strategy to control the increasing trend of obesity rate.
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Introduction
In the US overweight or obesity affects two of three adults and one 

in three of their children. The authors of the recently published IOM 
Report on Obesity Prevention (2012) lamented that the epidemic is a 
“startling setback to major improvements in child health attained in 
the past century.” 

Obesity impairs the metabolic and cardiovascular health of both 
adults and children and threatens to shorten the life span of the 
current generation of children [1]. The secular increases we have 
witnessed in the prevalence of childhood obesity presage an increase 
in the prevalence of T2DM as early as the second decade of life [2-
4]. The origins of obesity include individual genetic, neurohumoral, 
and physiological factors as well as familial, social, economic, 
environmental and policy decisions that influence children’s diet and 
physical activity.

Obesity is a complex phenotype that is captured through multiple 
surrogate measurements. Though focus on individual phenotypes of 
physical nature (such as BMI) can over-simplify this complexity, all 
of the body function measures that are seemingly inter-related with 
obesity are highly correlated among themselves. In this manuscript 
we intend to estimate the dependence pattern among many of the 
phenotypes and phenotypic groups in the context of obesity.

Aside from the presence or absence of any association, it is also 
important to understand the interplay between the various measures 
of body dysfunction and their downstream implications. Thus, among 
observed associations we will also focus on determining the direction 
of any causal relationships amongst the measures. As methods to infer 
causality are often labeled controversial, we instead intend to focus 
away from the methodological arguments and focus on the issue of 
emergence of obesity. We borrow the concept of Granger causality 
from econometrics [5] and adapt it to our context.

In the context of gene interaction, causality inference can be 
applied to decipher interactions within a network of hundreds of 
genes [6]. The size of the causality network for childhood obesity is 
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smaller than gene networks, but remains large enough to derive causal 
inferences. Because the origins of childhood obesity have been widely 
studied, we have a reasonable understanding of the pathophysiology 
of childhood obesity that should provide our developed causality 
network with biological plausibility.

Studies of gene interactions use the correlation coefficient and its 
variations as a measure of interaction. Schafer and Strimmer [4] used 
partial correlations, empirical Bayes methodology, and bootstrap 
methods to derive gene networks. Zhu et al [8] used correlation as a 
primary tool for constructing networks and pathways among genes 
and for analyzing gene clusters. Correlation is an effective tool for 
computing direction-free linear dependence when a sample of 
independent data is available. In this proposal, we analyze longitudinal 
data as opposed to cross-sectional data. The time dependent auto-
correlated measurements that characterize longitudinal data can be 
studied by time-lagged associations for the purposes of establishing 
causality. Graphical interaction models based on such analyses 
have been developed by [9] and applied to biological time series 
by [10-11]. Winterhalder [12] reported a detailed comparative 
study of techniques for directed interactions in multivariate time 
series. Based on these studies, we developed a longitudinal Granger 
causality network to establish causal relationships among genes [6]. 
The present paper uses the longitudinal Granger causality network 
method to analyze multivariate longitudinal data to study causal 
relations among factors associated with childhood obesity. In the 
context of childhood obesity, an inferred causality network that 
includes relevant biological variables could be used to identify those 
variables that would be most susceptible to interventions to prevent 
or delay the onset of childhood obesity.

Materials & Methods
Our primary data for obesity inference is the National Heart, 

Lung and Blood Institute (NHLBI) Growth and Health Study 
(NGHS), which includes detailed growth profiles of 2380 girls (1,213 
African-American and 1,166 Caucasian girls) between the ages of 
9 and 21 years. Visits were scheduled annually during the 10-year 
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enrollment, and at each visit measurements of Body Mass Index 
(BMI), waist circumference, skin fold thickness, blood pressure, 
blood chemistry, eating habits, and socioeconomic data were taken 
on each subject. The study population was 40% Caucasian and 51% 
African Americans. As the NGHS cohort is exclusively female, we 
also used data from the Fels Longitudinal Study (FLS), grouped into 
gender categories as our parallel study data for boys. The FLS started 
annual enrollment of 20-30 infants in 1929, and continues enrollment 
to follow the participants up to the present time. Like the NGHS, FLS 
participants provided measurements on body composition, blood 
pressure, blood chemistry, sexual maturity, cardio-vascular health, 
etc. over the life span. Visits are scheduled five times during the first 
year after birth, twice a year after that until age 18, and once every two 
years in adulthood. As we focus our analysis only on post-pubertal 
visits, our primary dataset excluded the visits in Tanner stages I and 
II of sexual maturity. Table 1 shows the mean and standard deviation 
of the baseline measurements of the demographic variables and 
the blood chemistry measures where baseline is the first visit after 
pubertal period. 

Our approach to causal inference among the longitudinal 
phenotypes captured in NGHS data is built upon the framework 
of Granger causality inference. Based on its original formulation 
[5], Granger causality is defined between pairs of time series data. 
Suppose we have the following two k-th order autoregressive [AR (k)] 
time series model (P1,P2)t

( )

( )

1t 11 1k 1(t- ) 11 2(t-1) 1k 2(t- ) 11 t-1

2t 21 2k 2(t- ) 21 1(t-1) 2k 1(t- ) 22 t-1

P P P P P

P P P P P
k k

k k

α α β β ε

α α β β ε

= + ⋅⋅⋅+ + + ⋅⋅⋅ + +

= + ⋅⋅⋅+ + + ⋅⋅⋅ + +

where Pit is defined as the ith time series observed at time t, βij is 
defined as the linear dependence coefficient of series Pi on jth past 
observation of the other series, αij is the linear dependence coefficient 
of series Pi on jth past observation of the same series, and ε1 and ε2 
are error terms. If the hypothesis H1:β11=β12=∙∙∙=β1k=0 is rejected at a 
specified level of significance, we say the phenotype 2 (P2) is Granger 

causing phenotype 1(P1). And if the hypothesis H2:β21=β22=∙∙∙=β2k=0 
is rejected at the specified level of significance, we say the phenotype 
1 is Granger causing phenotype 2. If both hypotheses are rejected, 
we conclude that both series are Granger causing each other. These 
β coefficients objectively measure the influence of early values of one 
time series on the future values of the other time series. Rejecting the 
null amounts to accepting significant influence of one time series on 
the other in a time lagged manner, i.e. early values of the one series 
significantly influence the future of the other. Typically, the test 
can be performed for multiple values of k, but in our case, since the 
visits are one year apart, we perform it only for k = 1. In a previous 
application of Granger causality [6] in the context of gene networks, 
we selected only one direction of causality: accepting the direction 
with lower p-value. We also removed loops (circular paths) in the 
causality network by modeling the network as a weighted graph and 
reducing it to a minimal spanning tree, i.e., the sub network with 
minimal removal of edges necessary to make it free of loops. Such 
measures are ways to simplify the web of connections within the 
network so that only the most significant parts of the network remain. 
Pairwise causal inference has an additional disadvantage of multiple 
testing problems. All of the tests (involving repeated measurements) 
are likely to be inter-dependent, and modeling that dependence 
is challenging, with common corrective measures possibly being 
inadequate. Indeed, when applied to the NGHS data, application of 
this algorithm produces a dense network, which, even after multiple 
testing corrections, fails to show an interpretable or useful network.

A more acceptable route to make this joint inference would be to 
conduct multivariate Granger causality. The basic definition, aligned 
with the intuition leading to the bivariate causality, is as follows.

Suppose we have multiple time series given by i
tY  for i=1, …, N 

and t=1, … , T. The series i
tY  is said to Granger cause the series j

tY  if 

( ) ( )( ) ( ) \ ,j j i
t t h t t h sMSE Y Y MSE Y Y Y s t⋅ ⋅

− −< <

For at least one h=1,2,3, … . We will consider the definition for 

(mean ± sd) NGHS postpubertal girls FLS postpubertal girls FLS postpubertal boys

Base AGE (years) 13.27 ± 1.52 12.61 ±2.11 12.77 ±1.41

Base BMI (kg/m2) 21.95 ± 4.69 19.86 ± 3.74 19.39 ± 4.48

Waist (cm) 70.25 ± 9.64 72.61 ± 9.99 72.62 ± 12.8

BP(Diastolic)(mmHg) 62.82 ± 9.57 58.67 ± 10.87 55.18 ± 11.36

BP(Systolic)(mmHg) 107.3 ± 8.6 99.83 ± 8.79 101.4 ± 8.62

Cholesterole (mg/dl) 160.2 ± 27.77 164 ± 19.62 166.9 ± 32.38

Triglyceride (mg/dl) 78.5 ± 41.8 98.5 ± 47.74 96.87 ± 52.16

HDL (mg/dl) 54.14 ± 11.15 51.85 ± 8.65 50.88 ± 12.51

LDL (mg/dl) 94.09 ± 25.54 92.65 ± 18.75 96.77 ± 27.96

Table 1: Baseline demographics and blood chemistry measures of the NGHS, and FLS boys and girls cohort after the end of pubertal period.

Groups Variables in NGHS cohort

Physical BMI(kg/m2), Max below waist circ.(cm), Min waist circ.(cm) , Sum of 
skinfolds(mm), SF/(subscap ST + supraliac SF) BMI(kg/m2), waist (cm).

Blood Pressure Diastolic Pressure(mm/Hg),  Systolic pressure(mm/Hg) Diastolic  Pressure (mm/Hg),  Systolic pressure (mm/Hg)

Blood Chemistry Fasting Triglyceride (mg/dl), Fasting Total Cholesterol (mg/dl), Fasting 
HDL-C (mg/dl), Fasting LDL-C (mg/dl).

Triglyceride (mg/dl),   Cholesterol(mg/dl),Alpha lipoprotein(mg/dl),beta 
lipoprotein(mg/dl).

Intake Total calories, Protein (% Kcal), Total  fat (%  Kcal), Total  carb (% Kcal). Daily calories (Kcal).

Table 2: Group definitions in NGHS and FLS cohort.
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only h=1. Here MSE(X|Y) is the mean squared error for predicting 
X based on a linear combination of Y, ( )

tY ⋅  is the multivariate time 
series including  and i j

t tY Y  as components, and ( ) \ i
t sY Y⋅  means all the 

random variables in ( )  except .it sY Y⋅  Note that this is not a statistical 
hypothesis, as it is not stated in terms of fixed parameters. To 
obtain a testable hypothesis, [13] restated this framework in terms 
of the canonical correlation between the time series. The series i

tY  
is Granger non-causal for j

tY  if the canonical correlation denoted 
( )( )

1 1, \ 0.i j j
t t t tCCA Y Y Y Y ρ⋅

− − = =  Both bootstrap- and likelihood-based 
method can be implemented to test this hypothesis. Note that 

 and i j
t tY Y  can be groups of time series, as canonical correlation is 

well defined for groups of variables. For the current purpose such 
group Granger correlation would render causal inference on groups 
of variables, such as all the blood pressure variables on one group, 
lipid profile defined by multiple blood chemistry measures, etc. We 
have defined four such groups of homogeneous variables indicating 
similar aspects of health (Table 2). Groups are conceived based on 
the aspect of health measured by the available variables on the study. 
BMI, skin folds thicknesses, waist circumference, all are physical 
obesity phenotypes. Blood pressure is simply the direct measures of 
hypertension. Blood chemistry is basically the lipid profile of subjects 
restricted to the available measurements. Food intake measures the 
eating habits of the subjects. We used a bootstrap-based approach 
to simulate the distribution of the canonical correlation. A few 
modifications of the straightforward application of Granger causality 
were needed to further refine the outcome of the analysis. While 
hypothesis testing can yield a significant p-value, thus indicating 
canonical correlation different from 0, the actual value of the canonical 
correlation is often very small. To understand the dependence among 
these groups of health indicators, we rely on the final network derived 
from the Granger causality tests and the canonical correlation values. 
To bring the canonical correlation value in the process of building 
the dependence network, we use values above the threshold of 0.44, 
which represents the 3rd quartile of all the canonical correlations 
computed here. When both directions in Granger causality tests 
are significant, only the direction with higher canonical correlation 
in retained. In analyzing FLS data, Granger causality testing rarely 
achieved the desired significance level, leaving the network with no 
edge. So we presented the network built solely from the canonical 
correlations above 0.44, which again represents the 3rd quartile of all 
the canonical correlations. 

In order to perform well, the causal model requires information 
about a large set of variables over an extended period of time. NGHS 
data are relatively well planned and collected over a fixed duration 
of the age of the participants. The variables included are generally 
not missing; therefore the model is more powerful with relatively 
more subjects. The FLS cohort was populated over eight decades, 

so the subjects are spread out over a wide age range. The battery of 
measurements in the FLS population evolved by adding and replacing 
old technology with newer methods, so some variables were collected 
only during specific calendar years, leading to apparent missing 
values. Thus, not all the participants had all the information collected 
at different points of time. As a result the analysis of male or female 
subgroups, restricted to their pubertal stage often lacked the number 
of subjects needed to estimate the model parameters. In both cohorts, 
data during the pre-pubertal stage were sparse and the model was not 
estimable in either cohort. We defined the post-pubertal cohort to be 
beyond Tanner stage II. However, the female subgroup of FLS data, 
after all the variables of the model are included, is thin in terms of 
non-missing cases. As a result the network is sparse. We present the 
canonical correlation network in that case. 

Results 
Table 3 shows the canonical correlations between the groups of 

variables among the post-pubertal subjects in NGHS cohort. These 
are all females within the age group 9 to 21 years, and only the 
observations after their Tanner stage II visit are used. The significant 
correlations are marked with *. Age is included in all models as 
a covariate; however, the causality network is drawn without the 
‘Age’ node. Here we have a large cohort with complete observations, 
which may be the cause of the small correlations with significant 
test results. Consequently, the Granger network presented in Figure 
1 is well connected, but most of the corresponding correlations 
are low. Regardless, most of the causalities depicted in Figure 1 are 
intuitive: change in intake is causing change in blood pressure and 
blood chemistry; change in physical parameters is causing change in 
intake and blood chemistry. Forward causality of blood pressure on 

Physical Blood.Pressure Blood.chem Intake AGE

Physical NA 0.2745* 0.3014* 0.1500* 0.3222*

Blood.Pressure 0.2886* NA 0.0363 0.0524 0.1439*

Blood.chem 0.2939* 0.1093 NA 0.1498* 0.0464

Intake 0.1558* 0.0996* 0.1775* NA 0.1005*

Table 3: Cannonical correlations of the groups among NGHS post-pubertal 
cohort with the response group in rows and lagged groups on columns. Values 
marked with * are significant at 5% level.

Physical Blood. Pressure Blood. chem Intake AGE

Physical NA 0.3251 0.6688* 0.1875 0.2404

Blood. Pressure 0.5157 NA 0.5245 0.5864* 0.3936

Blood. chem 0.5169 0.6070 NA 0.4766 0.5298

Intake 0.1684 0.3248 0.5281 NA 0.0047

Table 4: Cannonical correlations of the groups of variables in FLS postpubartal 
boys cohort with the response group in rows and causing groups on columns.’*’ 
indicates significant p value at 5% level of significance.

Figure 1: Granger causality network among the NGHS participants during 
their post-pubertal period. Edge thickness is proportional to the canonical 
correlation between the two groups. 
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physical variables is unexpected, as is the causality between intake 
and the physical variables. Another notable feature of the network 
is the lack of causality between blood chemistry and blood pressure, 
which suggests that the dependence is explained through other nodes. 

Table 4 presents the canonical correlations among the groups 
defined in Table 1 in the male subgroup of FLS cohort. Here also, 
Tanner stage II was used to define the pubertal stage. Only the post-
pubertal data are used to define the subgroup, and Age is included 
in all models as a covariate. The final model included 115 male and 
109 female subjects, with variable length of time of follow-up. Use of 
correlation requires multiple observations across time, but 12 of the 
female and 11 of the male subjects had 2 or fewer time points, thus 
reducing the effective sample size. Due to an insufficient number of 
subjects, few of the correlations are significant, although the actual 
values of the correlations are larger than those observed in the 
NGHS cohort. Both Figures 2 and 3 are generated by this analysis 
using the p values of the causality test and the value of the canonical 
correlations, respectively. The significant p-value network is naturally 
sparse with only two edges. Although the FLS cohort differs from the 
NGHS cohort, in gender composition and age range, it is interesting 
to note the similarities and differences between the networks. The 

Figure 2: Granger causality network among FLS cohort boys using only the p 
values during their post-pubertal period. Edge thickness is proportional to the 
canonical correlation between the two groups.

Figure 3: Granger causality network among FLS boys using only cannonical 
correlations above 0.44. Edge thickness is proportional to the canonical 
correlation between the two groups.

Figure 4: Granger causality network among FLS cohort post-pubertal girls 
using their cannonical correlations above 0.44.

causality in Figure 2 between physical variables and blood chemistry 
in participants in the FLS is also found in the NGHS network, but the 
causality between intake and blood pressure is reversed in direction. 
The canonical correlation network of the FLS participants presented 
in Figure 3 is similar to that in the NGHS network. Three of the 
causalities, namely blood pressure →physical parameters→ blood 
chemistry and food intake → blood chemistry, are also repeated in the 
NGHS network. Causality between physical parameters and intake is 
missing here, and the causality blood chemistry →blood pressure is 
the only new edge. 

Table 5 shows the canonical correlations among the post-pubertal 
female population in the FLS cohort. Even though the canonical 
correlations are relatively larger compared to the NGHS cohort, 
none of the statistical tests reached significance, meaning the p-value 
induced network has no edges. The canonical correlation induced 
network, using the values above 0.44 is presented in Figure 4 and 
includes only one edge from physical parameters→ blood chemistry, 
which is common to all the networks. 

Discussion
Some of our findings align with biological intuition, notably the 

repeated patterns of food intake causing changes in blood chemistry, 
and physical parameters preceding change in blood chemistry. The 
repeated pattern of blood pressure causing physical parameters is a 
feature of our analysis that remains to be explored further through 
biological studies. Hypertension and BMI are other physical 
parameters that has known association, though a causal direction has 
not been established. 

Only in the subpopulation of post-pubertal boys did we find 
that blood chemistry affects blood pressure, and only in NGHS 

Physical Blood. Pressure Blood. chem Intake AGE

Physical NA 0.4129 0.4867 0.1334 0.4442

Blood. Pressure 0.4229 NA 0.3111 0.2907 0.2894

Blood. chem 0.3278 0.2717 NA 0.1632 0.3146

Intake 0.1944 0.0732 0.2944 NA 0.0547

Table 5: Cannonical correlations of the groups of variables in FLS postpubartal 
girls cohort with the response group in rows and causing groups on columns. ‘*’ 
indicates statistical significance at 5% level. 
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female subjects did we find that change in physical parameters 
precedes change in food intake. These directions can be explained as 
gender-specific effects. The interaction of blood pressure and food 
intake occurred in multiple networks with different directions. The 
biological basis of this interaction is not clear. 

Regardless of the direction of interaction, the nodes ‘Physical 
parameters’ and ‘Blood chemistry’ remain the most connected nodes. 
Thus, these can be considered to be the central feature of this network. 
Implications of this connection can be used in strategies to manage 
overall health. 

Conclusion
Our analysis highlights the difficulty of performing a data 

based multivariate causality inference in cohort study. The main 
limitations are the dimension of the model and sparseness of some 
of the variables. We did not use any imputation for this analysis, 
which led to many partial observations not being used. FLS data has 
2567 subjects in total, but this analysis uses only 115 male and 109 
female subjects. NGHS data, were reduced from 2380 subjects to 2250 
subjects, however, 112 of them had only 2 or fewer post-pubertal 
visits. Regardless, there is a trend in causality structure that reinforces 
our prior understanding, and there are some new features that are 
worth further exploration. 

The bigger goal behind such causality inference is to identify a 
“source of causality” among all the correlated collective nodes. In a 
way, irregularity in all the variables considered in our analysis define 
the complex phenotype ‘obesity’ rather than just being associated. 
Therefore the process of management of obesity should have an 
impact on all the nodes of our network. Interdependence among them 
is likely to better guide us in developing a strategy to manage obesity. 
The most connected nodes in our analysis have been consistently the 
‘physical parameters’ and ‘blood chemistry’. Therefore any health 
management strategy should focus on these nodes. This does not 
downplay the need to manage the other nodes. We only emphasize 
that starting management of physical parameters or blood chemistry 
will be more likely to produce a cascade effect on the other nodes, 
than the reverse. A successful health management should have a 
positive effect on all the variables considered here. 
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