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Abstract

Dependent binary data can be simply simulated using the multivariate 
normal- and multinomial sampling-based approaches. We extend these methods 
to simulate dependent binary data with clustered random effect structures. 
Several distributions are considered for constructing random effects among 
cluster-specific parameters and effect sizes, including the normal, uniform and 
beta distributions. We present results from simulation studies to show proof 
of concept for these two methods in creating data sets of repeated-measure 
binary outcomes with clustered random effect structures in various scenarios. 
The simulation studies show that multivariate normal- and multinomial sampling 
approaches can be successfully adapted to simulate dependent binary data with 
desired random effect structures.

Keywords: Dependent binary data; Clustered random effect; Simulated 
data
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MVN: Multivariate Normal; CDF: Cumulative Distribution 

Function; PDF: Probability Density Function; MS: Multinomial 
Sampling

Introduction
Methods for simulating dependent binary outcomes are often 

required for the assessment of statistical methodologies suitable 
for repeated measure study designs with dichotomous outcomes. 
Such simulation techniques can also be useful in determining 
required sample sizes for longitudinal study designs featuring binary 
measurements. Emrich and Piedmonte [1] developed a gold-standard 
method for simulating dependent binary outcomes based on the 
multivariate normal distribution. Kang and Jung [2] introduced 
an approach based on the multinominal distribution of all possible 
combinations of the binary outcomes. Both of these approaches were 
extended to account for modeling dependencies with odds ratios in 
Sabo et al. [3].

While useful for repeated-measures or multiple-outcome studies, 
these methods require expansion if they are to be used in more 
complicated situations. For instance, certain research studies feature 
inherent clustering, where groups of subjects exist in natural clusters 
or groups. Examples include studies of school-age children attending 
various class rooms or schools [4], or primary care patients who 
attend one of several primary care facilities [5], the latter of which 
also features patients nested within primary care physicians, who are 
in turn nested within primary care practices that are nested within 
larger health care systems. The previously mentioned simulation 
approaches cannot incorporate this type of complexity without 
amendment and are unsuitable as currently constructed to simulate 
clustered repeated measure data that would mimic such a scenario.

In this manuscript, we extend the multivariate normal- and 
multinomial sampling-based approaches for simulating dependent 
binary outcomes to also incorporate a desired cluster structure. This 
extension requires probabilistically generating parametric simulation 
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templates for each of the desired cluster levels or combinations. 
Several simple probability distributions are used to exemplify the 
process of establishing the cluster-specific parameters and effect sizes, 
including the normal, uniform and beta distributions. The rest of this 
manuscript is outlined as follows. The two simulation methods are 
briefly described in the next Section, and are extended to account 
for a desired cluster structure. The performances of these extensions 
are then examined through simulation studies. A brief discussion 
concludes the manuscript.

Materials and Methods
Simulation methodologies: Multivariate normal approach

The simulation approach by Emrich and Piedmonte [1] utilizes 
the multivariate normal distribution to generate vectors exhibiting 
desired dependence levels, which are then categorized into binary 
observations. The process begins by using the desired pairwise 
correlations ρij between binary measures Yi and Yj with marginal 
probabilities pi=P(Yi=1) and pj=P(Yj=1) to solve for a bivariate 
correlation rij using the bivariate normal Cumulative Distribution 
Function (CDF)

Φ[z(pi),z(pj),rij]= ρij(piqipjqj)
1/2+pipj,  (1)

where z(p) is the pth percentile of the standard normal distribution 
and q = 1 - p. Odds ratios could be used in place of correlations by 
replacing the right-hand side of Equation(1) with the Plackett copula 
[6] C(pi,pjΨij), where Ψij is the desired odds ratio, as shown in Sabo et 
al.[3]. The values rij∀i≠j are then placed into a correlation matrix R 
and used to simulate a k×1 multivariate normal vector z= (z1,…,zk)
T∼MVN(0,R). Binary observations are then created by classifying 
each element of z by letting Yi=1 if zi≤z(pi) and Yi=0 otherwise. This 
process can be repeated by generating and classifying n such vectors 
to create the desired simulated sample.

Simulation methodologies: Multinomial approach
The multinomial-based simulation method introduced by 

Kang and Jung [2] uses a multinomial distribution of all possible 
combinations of dependent binary outcomes, which can be created 
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through the joint and marginal probabilities, along with the desired 
correlation. Given a desired correlation ρij between binary variables Yi 
and Yj with desired marginal probabilities pi and pj, we first calculate 
the joint probability pij using the following expression.

ij i j ij i i j jp p p p q p qρ= +    (2)

Note that if odds ratios are used instead of correlations, then pij can 
be solved for by inserting the desired odds ratio Ψij and marginal 
probabilities pi and pj into the Plackett copula, as described in Sabo et 
al. [3]. Note that whether correlations or odds ratios are used to model 
dependence, the remainder of the multinomial-based approach is 
identical after the pair-wise joint probabilities pij are calculated.

If three or more dependent binary measures are to be simulated, 
then higher order joint probabilities must be calculated. Let pijk 
represent the joint probability P(Yi=1,Yj=1,Yj=1), which is not 
uniquely defined by the marginal probabilities and the correlation. 
As shown in Chaganty and Joe [7], the minimum and maximum pijk 
are defined as follows,

pijk,L=max{0,pij+pik-pi,pij+pjk-pj,pik+pjk-pk}  (3)

pijk,U=max{ pi,pj,pk,1-pi-pj-pk+pij+pik+pjk}

where any value pijk∈[pijk,L,pijk,U] leads to a valid probability density 
function with the desired marginal probabilities and dependence 
level. Though any value in this range is appropriate, we take the 
midpoint pijk=(pijk,L+pijk,U)/2. Higher order joint probabilities in cases 
of four or more dependent binary observations can be determined in 
a similar manner, though the calculations become more tedious as the 
number of observations increases.

These quantities are used to calculate the multinomial Probability 
Density Function (PDF) of all combinations of outcomes, which for 
the two-variable case are shown in the first two columns of Table 1. 
The CDF is created by progressively summing the values of the PDF, 
where the subscripts on P indicate whether each binary outcome 
is successful, with 1 for success and 0 for failure. For example, 
P01=P(Y1=0,Y2=1). After the CDF is determined, a random number 
u~Uniform [0,1] is simulated, and the simulated observations are 
generated based on the decision rules based on the CDF, as shown in 
the last two columns of Table 1. For example, if P11<u<P11+P10, then 
the observation is recorded as Y1=1 and Y2=0, or simply as 10. This 
process can be repeated to generate a sample of n dependent binary 
outcomes. A similar approach – outlined in Kang and Jung  [2] and 
Haynes et al. [8] – can be used in cases of three or more dependent 
binary outcomes. 

Accounting for random effects by generating the 
simulation templates

For the two simulation approaches discussed in Section 2, we 
simulate a set of binary data representative of a single population by 

repeating either process n times using a single simulation template, 
which consists of all desired marginal probabilities pi,i=1,…,k and 
pair wise correlations ρij (or odds ratios Ψij). To generate two or 
more groups of simulated binary observations, where groups are 
differentiated by either different marginal probabilities, dependencies, 
or both, the simulation approach is repeated separately for each group 
with the desired simulation template.

Expanding the multivariate- and multinomial-based approaches 
to account for random effects (say from clustering) requires only 
a simple extension of the process used when simulating binary 
observations for multiple groups. As a motivating example, let’s 
assume we want to simulate M clusters of n samples of two correlated 
binary measures. Let’s further assume that those two measures have 
marginal probabilities that vary across the M clusters in such a way 
that the averages are p1=π1 and p2=π2 and the corresponding cluster 
variances for those rates are σ1 and σ2 .

First we assume that the marginal probability for each binary 
measure has some probability distribution pi~ f(θi), where f(o) is 
some probability mass or density function and θ is some parameter 
(possibly vector-valued) selected such that  ( ) ( )i i i iE p p f dyθ π= =∫  
and ( ) ( )( ) ( )2

i i i i iV p p E p f dyθ σ= − =∫  for group i=1,2. If we 
desire M clusters of simulated observations, then we simulate M 
marginal probabilities p1,m and p2,m from f(θ1) and f(θ2), respectively, 
for m=1,…,M. For cluster m, we simulate the desired number of 
dependent binary observations using p1,m and p2,m  and the desired 
dependence level ρ12(orψ12). This process is repeated for m=1,…,M, 
and the resulting M clusters of simulated data will on average exhibit 
a distribution of marginal probabilities centered around π1 andπ2, 
though the cluster-specific marginal means will vary according to σ1 
and σ2, thus achieving the desired level of clustering.

In the previous scenario, the marginal probabilities were given 
probability distributions and themselves simulated M times to achieve 
a clustering effect. An equivalent approach would be to simulate p1~ 
f(θ1) probabilistically to achieve a desired mean and variance for the 
first marginal mean across clusters, and then simulate some δ~g(γ) 
and define p2=p1+δ, where g(o) is some probability distribution 
not necessarily of the same form as f(o), and γ  is some parameter 
(possibly vector-valued) such that ( ) ( )E g dδ δ γ δ= ∫  yields the desired 
difference between p1 and p2 with some desired cluster variability 

( ) ( )( ) ( )2
V E g dδ δ δ γ δ= −∫ .

This approach extends naturally to more complicated scenarios, 
including cases of two or more clustering factors, or even nested 
factors. The unifying theme is that data are simulated uniquely for 
each combination of clusters, mainly through parametric templates 
that are probabilistically generated for each combination. For 
example, in the case of hierarchical clustering, where one factor is 
nested within the levels of another, the parameters θi used to simulate 
the parameter values, which are used to simulate data for each cluster 
can be probabilistically determined. Further, the researcher has 
much discretion in selecting how those factors or levels affect the 
particular probability distribution and parameters used to simulate 
the simulation template for each cluster. The dependence levels 
between the binary outcomes can also be made to be cluster- or level-
dependent, provided a distribution is selected that offers control 
in selecting the desired dependence while also ensuring the proper 
support.

PDF CDF Decision Rule and Simulated Outcome

P11=p12 P11 U<P11 11

P10=p1-p12 P11+P10 P11<U<P11+P10 10

P01=p2-p12 P11+P10+P01 P11+P10 <U<P11+P10+P01 01

P00=1-p1-p2+p12 P11+P10+P01+P00 U>P11+P10+P01 00

Table 1: Two-variable PDF, CDF and decision rules for multinomial approach.
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Distribution examples
We consider three examples of distributions that can be used in 

this simulation process, understanding that there are alternative and 
potentially more suitable options available. The only requirement 
is that the support of the distribution must either be equal to [0,1], 
be a proper subset of [0,1], or have a reasonably low probability 
of occurring outside [0,1]. A simple choice would be to simulate 
the marginal probabilities from a uniform distribution such that 
pi,m~Uniform[θi1,θi2] for m=1,…,M clusters and i=1,…,k binary 
outcomes, where the midpoint of θi1 and θi2 yields the desired 
marginal mean πi. In this case the inter-cluster variability in marginal 
probabilities can be controlled by increasing or decreasing the 
difference θi2-θi1, making it wider for greater variability and narrower 
for less variability. In this case the Uniform parameters can be selected 
such that pi,m∈[0,1]∀i,m.

Another example would be to simulate the marginal probabilities 
from a beta distribution such that pi,m~Beta[αI,βi] for m=1,…,M 
clusters and i=1,…,k binary outcomes, where shape parameters αi 
and βi are selected so that the mode is equal to the desired marginal 
probability (i.e. (αi -1)(αi +βi-2)=πi). There are infinite pairings of 
the shape parameters that give the same mode, so the inter-cluster 
variability in the marginal probabilities is controlled by making both 
αi and βi larger (for less variability) or smaller (for more variability). 
Since the support of the Beta distribution matches that of proportions 
and probabilities, we are assured that pi,m∈[0,1]∀i,m.

The final example we consider is to simulate marginal 
probabilities from a normal distribution with low variance such 
that ( )2

, ~ ,i m i ip Normal π σ , where πi is the desired ith marginal 
probability and 2

iσ  is the desired inter-cluster variation, often these 
should be set to a common value σ2. While this choice of distribution 
has infinite support, the variance 2

iσ  can be made small enough 
to all but ensure values are greater than 0 and less than 1 while 
simultaneously providing the desired variability. The simulations can 
also be truncated so that p=0.001 if the simulated value is less than 0 
and p=0.999 if it is greater than 1. Using the normal distribution also 
has the advantage of providing more direct control of the inter-cluster 
variability in marginal proportions as compared to the Uniform and 
Beta distributions.

Extension to existing approaches
For the multivariate normal-based approach, the simulated 

marginal probabilities p1,m,…,pk,m for clusters m=1,…,M are matched 
with the desired dependence levels ρij(orψij) and are used in Equation 
1 separately for each cluster. At this point, the process continues as 
stated in Section 2.1. Likewise, for the multinomial-based approach, 
the simulated marginal probabilities are matched with the desired 
dependence levels and used to determine the joint pair wise 
probabilities in Equation 2. Thereafter, the multinomial approach 
continues as stated in Section 2.2.

Results and Discussion
Simulation study

Here the performance of the multivariate normal and multinomial 
approaches to simulating dependent binary data with random effects 
is examined through simulation studies. The first case illustrates the 
simple situation where we simulate k=2 dependent binary outcomes 

over M=20 clusters. A second case looks at the situation where we 
simulate k=2 dependent binary outcomes over M=20 clusters, each 
consisting of both treatment and control subjects. For each case 
we assume the correlation between the two outcomes is ρ12=0.2, 
irrespective of group and cluster. Sample size was fixed at n=100 
subjects per cluster. For both cases we also investigate the use of the, 
Uniform, Beta and Normal distributions for generating the simulation 
templates and incorporating the cluster-level variability. A total of 
500 data sets was created for each combination of distribution and 
simulation method, and are used to estimate the average overall 
marginal probability for each measure, the standard error of those 
means, the average effect size (and standard error) for the case-specific 
hypothesis test, the empirical power for the case-specific hypothesis 
test, the mean and standard error of the inter-cluster variability, the 
mean estimated correlation, and the percentage of data sets for which 
the desired model converged. SAS (version 9.4, Cary, NC, USA) was 
used to simulate data and fit generalized Linear Mixed Models using 
the IML and GLIMMIX procedures, respectively.

Case 1: Clustered, One-Group, Repeated-Measure Study
In this case we simulate k=2 binary outcomes over M=20 clusters, 

where the global marginal probabilities for the two outcomes are 
p1=0.25 and p2=0.45, indicating that the rate of our simulated 
outcome increases by 0.20 after some time (possibly after an 
intervention). To incorporate inter-cluster variance we simulate the 
marginal probabilities according to the specifications listed in Table 
2. Here we see that: the midpoints of the two Uniform distributions 
are (0.15+0.35)/2=0.25 and (0.34+0.55)/2=0.45, respectively; the 
modes of the two Beta distributions are (11-1)/(11+31-2)=10/40=0.25 
and (10-1)/(10+12-2)=9/20=0.45, respectively; and the means of the 
two normal distributions are 0.25 and 0.45; in each case matching the 
target levels. These values also imply that the inter-cluster variability 
in the marginal means is 0.0033 for both measures with the Uniform 
distribution, 0.0045 and 0.0178 for the Beta distribution, and 0.01 for 
both measures with the Normal Distribution. The intended model is 
fit with a fixed two-level “time” effect, a cluster-level random effect 
to account for the inter-cluster variation, and a subject-level random 
effect to account for the correlation between the measures. The null 

Marginal Distribution

Time Mean Uniform Beta Normal

1 P1 U[0.15,0.35] Beta(11,31) N(0.25,0.12)

2 P2 U[0.35,0.55] Beta(10,12) N(0.45,0.12)

Table 2: Simulation template for case one.

Dist. Approach P1
(SE)

P2
(SE)

P2-P1
(SE)

Cluster 
Random

Effect (SE)

P
(SE)

% 
Converged

Uniform MS 0.248
(0.015)

0.449
(0.015)

0.201
(0.023)

0.034
(0.020)

0.192
(0.021) 99.0%

MVN 0.250
(0.016)

0.449
(0.017)

0.199
(0.022)

0.033
(0.018)

0.191
(0.023) 100%

Beta MS 0.257
(0.017)

0.453
(0.025)

0.196
(0.030)

0.075
(0.035)

0.181
(0.023) 99.8%

MVN 0.261
(0.019)

0.457
(0.026)

0.196
(0.031)

0.076
(0.033)

0.180
(0.022) 100%

Normal MS 0.247
(0.026)

0.447
(0.024)

0.201
(0.034)

0.102
(0.044)

0.170
(0.025) 100%

MVN 0.247
(0.025)

0.450
(0.020)

0.203
(0.035)

0.100
(0.045)

0.170
(0.023) 100%

Table 3: Simulation results for case one.
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hypothesis is no difference over time (i.e. H0:(p1=p2) against a two-
sided alternative.

The aggregate results over the 500 simulations for case 1 are 
found in Table 3. Here we see that both the MS and MVN simulation 
approaches were accurate in reproducing the marginal proportions 
p1 and p2, as well as the difference δ=p2-p1. We see that the MS and 
MVN approaches everywhere provided similar estimates and 
standard errors. The variability of these estimates is low and is also 
comparable between approaches. The cluster random effects averaged 
over all simulations are also provided; note these will not necessarily 
correspond to the theoretical inter-cluster variances stated earlier 
as these are model-derived and based on linked expectations in the 
generalized linear mixed model framework. The target correlation 
(ρ=0.2) was also achieved by both methods, with reasonably small 
variance. The MS approach produced data sets that converged at least 
99.0%, while the MVN approach always converged.  The empirical 
powers for testing the null hypothesis of no difference in change over 
time between the two groups for the both the multivariate normal 
and multinomial approaches were >99.9% for each of the three 
distributions (not shown in Table 3).

While comparisons of the simulation results between the different 
simulating distributions (Uniform, Beta and Normal) are unnecessary, 
we can briefly investigate their behavior. The inter-cluster variability 
estimates using the normal distribution to generate the simulation 
template were 

2
0.102ICσ

∧

=  for the MS approach and 2
0.100ICσ

∧

=  for the 
MVN approach. If these levels are deemed too large, then the variance 
assumed in the simulation template (here σ=0.1) can be lowered. 
Likewise, the inter-cluster variability can be increased or decreased 
using the Uniform distribution by either increasing or decreasing the 
range about the desired proportions. While the process for the Beta 
distribution requires solving one equation for two unknowns (such 
that the given scale and shape parameters provided a desired mode), 
their sum can be increased or decreased to either decrease or increase 
the desired intra-cluster variability.

Case 2: Clustered, Two-Group, Repeated-Measure Study
In this case we simulate k=2 binary outcomes over m=20 

clusters, where subjects in half the clusters belong to a treatment 
group and where subjects in the other half of the clusters belong 
to a control group. Assuming an effective treatment, the global 
marginal probabilities for the two outcomes in the treatment group 
are p11=0.25 and p12=0.45, while for an ineffective control the global 
marginal probabilities are p21=p22=0.25; these values indicate that 
the difference in the changes over “time” is (p12-p11)-(p22-p21)=0.20. 
To incorporate inter-cluster variance we simulate the marginal 
probabilities according to the specifications listed in Table 4. As in the 
previous case, we can easily show that that each distribution obtains 
the target marginal probability for that Group and time. The inter-
cluster variability’s are similar to what was described before. The 
intended model is fit with a fixed two-level “time” effect, a fixed two-
level “group” effect, a group-time interaction, a cluster-level random 
effect to account for the inter-cluster variation, and a subject-level 
random effect to account for the correlation between the measures. 
The null hypothesis is no difference in change over time between the 
two groups (i.e. H0:(p12-p11)=(p22-p21)) against a two-sided alternative.

The aggregate results over the 500 simulations for case 2 are found 

in Table 5. Here we see again that both approaches were effective in 
estimating the marginal means as well as the desired difference in 
the change in proportions over time (δ=0.2), and the efficiencies of 
these estimates were similar for both methods. The estimated inter-
cluster variance and the correlation between the repeated measure 
outcomes were similar between the MS and MVN approaches, while 
the estimated correlations were also close to the desired level (ρ=0.2). 
At least 98.8%of the data sets generated by the MS approach allowed 
models to converge, and at least 99.0% of the MVN-derived data sets 
allowed model convergence. The empirical powers for the testing the 
null hypothesis of no difference in change over time between the two 
groups for the multinomial approach were >99.9% (Uniform), 99.2% 
(Beta) and 96.8% (Normal), and were >99.9% (Uniform), 99.2% 
(Beta) and 96.6% (Normal) for the multivariate normal approach 
(not shown in Table 5).

Conclusion
We extended both the multinomial sampling approach and the 

multivariate normal approaches to simulating dependent binary 
data to account for desired random effect structures. The extensions 
for both methods are simple to implement and offer control of 
marginal probabilities, dependence between outcomes, and intra-
cluster variability. Rather than being assigned constant values, the 
desired marginal probabilities are sampled from specified probability 
distributions, where a separate simulation template is simulated for 
each cluster. Simulation studies show that our extension to both 
approaches yields data that achieve the desired marginal probabilities 
with relatively low variability, and also exhibits the desired correlation 
between the binary repeated measures. The parameters for the 
distributions used in the simulation template can also be adjusted to 
achieve a desired inter-cluster variability.

One limitation in the presentation of this research is that the 
simulation templates used here are not exhaustive. In both examples 
offered we only considered cases of two repeated measures and we 
presented a limited selection of marginal means and correlations. 
However, extending this approach to account for more repeated 
measures or alternative simulation templates is straightforward. We 
also did not consider more complicated random effect structures, 
though the underlying principle remains the same: randomly generate 
a simulation template for each cluster or combination of clusters. 
This general idea can be applied to other simulation approaches for 
simulating dependent binary data (e.g., Qaqish [9]), and in principle 
can be adapted in simulation methodologies for other types of 
dependent outcomes.

An important statistical role in the preparation of clustered study 
designs is determining the sample size required to find a desired 
effect size. While equations or numerical procedures for estimating 

Marginal Distribution

Group Time Mean Uniform Beta Normal

Treatment 1 P11 U[0.15,0.35] Beta(11,31) N(0.25,0.12)

2 P12 U[0.35,0.55] Beta(10,12) N(0.45,0.12)

Control 1 P21 U[0.15,0.35] Beta(11,31) N(0.25,0.12)

2 P22 U[0.15,0.35] Beta(11,31) N(0.25,0.12)

Table 4: Simulation template for case two.
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a required sample size are available for some situations (e.g., Donner, 
Birkett and Buck [10]), more complicated situations involving 
repeated measures and intricate clustering may require a simulation-
based approach. Simulation templates can be designed to match the 
desired effect size and clustering structure, and empirical power can 
be estimated by repeatedly simulating such data. In a similar manner, 
new statistical methodologies suitable for repeated binary outcomes 
in clustered settings can be numerically assessed and compared with 
alternative procedures. Data can be simulated from a desired template 
and analyzed by the methodologies under consideration, and key 
features from that analysis (e.g., means, test statistics, confidence 
intervals, and hypothesis testing decisions) can be aggregated over 
repeated simulations and compared between competing models.
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