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Abstract

The Lindley model is considered as an alternative model facilitating analyses 
of time-to-event data with covariates. Covariate information is incorporated 
using the Cox’s proportional hazard model with the Lindley model as the time-
dependent component. Simulation studies are performed to assess the size and 
power of tests of hypotheses on parameters arising from maximum likelihood 
estimators of parameters in the Lindley model. Results are contrasted with 
that arising from Cox’s partial maximum likelihood estimator. The Lindley-Cox 
model, is used to analyze a publicly available data set and contrasted with other 
models. 
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Introduction and Definitions
The Lindley distribution [1] was introduced in connection with 

fiducial distribution and the Bayes’ theorem, but it has not been 
widely utilized for analyses of time-to-event data until the past decade 
when Ghitany et al. [2] explored its mathematical properties and real 
data applications in time-to-event settings. However, to the best of 
our knowledge the Lindley distribution has not been considered in 
connection with the incorporation of covariate information.

Covariate information and times-to-event are collected on 
subjects in time-to-event studies (e.g., time-to-death or survival 
time). Such data are often analyzed by choosing a suitable model 
for the times-to-event that allows covariates to be utilized in the 
statistical analyses. The analyses proceed by estimating parameters in 
the model and testing hypotheses about those parameters based on 
their estimates. The validity and reliability of inferences from tests 
of hypotheses about parameters depend on the size and power of the 
tests.

We motivate incorporation of covariate information using the 
Lindley distribution as the time-dependent component of the Cox’s 
proportional (Cox’s PH) model with the data set provided by Freireich 
et al. [3]. The data set contains survival times and White Blood Cell 
(WBC) information on a small number of patients. With such a small 
sample, the efficiency of the partial maximum likelihood estimates of 
the Cox’s proportional hazard model may not be optimal [4-6].

The relationship among hazard rate function h(t), survival 
function S(t), death density function f(t), and death distribution 
function F(t) is important in describing time-to-event probabilities 
of a population. If the hazard rate h(t) function is given, then the 
survival function S(t) is  

0

( ) exp[ ( ) ]
t

S t h u du= −∫ ,            (1)

 and 

( ) ( ) ( ) [ ( )] ;d S tf t h t S t
dt

−
= =             (2)

F(t)=1-S(t) (3)
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Accordingly, if one knows any of the functions, one could 
determine the remaining three. 

The cox proportional hazard model
Cox [7] considered a distribution-free approach that incorporates 

covariates, in which the main purpose of survival times is to keep 
track of the covariate information [4]. Assuming arbitrary baseline 
hazard, Cox proposed the hazard function

( ) ( ) ( )'
0; , , ; exp ,h t X h tΘ = Θ Xβ β

   
      (4)

where X=(x1,x2,…,xp) is a vector of p-covariates, β=(β1, β2,…, βp) is the 
corresponding vector of unknown parameters, h0(t;Θ) is the baseline 
hazard (a function of time only), and Θ is the parameter vector of the 
baseline hazard function. Under Cox’s proportional hazard model, 
no assumption is made about the specific form of the baseline hazard 
function, and interest is on assessing the association between the 
survival times and covariate information. He estimated the covariate 
parameter vector β by maximum likelihood that is conditional on risk 
sets of instances of event occurrence.

Cox [7] noted that a major problem is the assessment of asymptotic 
relative efficiency of tests on covariate parameters under various 
assumptions about h0(t;Θ). Some authors addressed this problem for 
specific forms of h0(t;Θ) [4,5,8,9] . For a single covariate (i.e, p=1), 
Kalbfleisch [8] suggested that the exponential and Weibull forms 
for h0(t;Θ) do not provide significantly greater efficiency than Cox’s 
procedure in most practical settings. Kalbfleisch’s results suggested 
that covariates and their coefficients affect the efficiency properties 
of Cox’s estimator. Efron [9] maintained that the full maximum 
likelihood estimator of β is asymptotically equivalent to Cox’s partial 
likelihood estimator of β—by showing that Fisher’s information for 
β (for p=1) using the entire data is asymptotically equivalent to that 
calculated from Cox’s model.

Specific hazard function as the time-dependent 
component of the Cox’s proportional hazard model

Many authors proposed distribution-based methods that 
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incorporate covariates in modeling time-to-event data; see for 
example [5,10-12].

Specifying h(t;X,θ,β)= h(t;θ) exp(X′β) and h(t;θ) to be a specific 
parametric hazard function yields a parametric model with the death 
density function f(t; θ, X, β)= h(t;θ,X,)S(t;θ,X,β),

( ) ( )
0

; , , exp ; , ,
t

S t h u duθ θ
 

= − 
 
∫X Xβ β .  (5)

This formulation enables parameters in the time-dependent 
component and covariate parameters of the hazard rate function to 
be estimated and attendant inference made using (full) maximum 
likelihood methods.

Many authors considered models with specific forms of h0(t;Θ), the 
time-dependent component of the hazard function [4,5,12-15] under 
various assumptions. The exponential, Weibull, and Gompterz are 
examples of such models. Peace and Flora [4] and Peace [5] assessed 
the efficiency (size and power) of tests of hypotheses on covariate 
parameters by assuming the exponential, Weibull, Gompterz, and 
Rayleigh models (parametric with covariates) for the time-dependent 
component of Cox’s model using full maximum likelihood theory as 
compared to those from using Cox’s model and partial maximum 
likelihood method of estimation. They suggested that if interest is 
solely on β, choosing any of the considered parametric models as the 
first step in analyzing time-to-event data may not worth the effort; 
they recommended Cox’s method for analyses, except for small 
samples (n=25). They, however, recommended exponential model 
(when it fits the data) over Cox’s for assessing global null hypotheses. 
Their recommendations derive from the parametric models having, 
on average, larger power than Cox’s for small samples-particularly for 
tests concerning one covariate parameter.

We consider the Lindley model as an alternative model 
facilitating the analyses of time-to-event data with covariates. Such a 
consideration reflects an extension of [4] and [5] in comparing tests 
of hypotheses on time-to-event parameters from Cox’s Model and 
method of estimation with those from fully parametric methods for the 
Lindley-Cox model using simulation studies. Covariate information 
is incorporated using the Cox’s proportional hazard’s model with 
the Lindley model as the time-dependent component (referred to as 
the Lindley-Cox model). This mixture model is relatively recent and 
has not seen applications in the analyses of time-to-event data with 
covariates. Specifically, we (1) perform simulation studies to assess 
the size and power of tests on parameters arising from Maximum 
Likelihood Estimates (MLEs) of β in the Lindley-Cox model, and 
(2) contrast the results of size and power of tests on β arising from 
Lindley-Cox MLEs with those arising from Cox’s partial maximum 
likelihood estimator. In addition, we analyze a publicly available 
data set using the Lindley-Cox model and contrast our findings with 
results from other models. 

Methods
The Lindley model as the time-dependent component of 
the Cox’s PH

With the formulation in the peceding section, specifying the 
Lindley hazard and survival functions with covariate gives 

2 (1 )( ; , , )  exp( ' ),
1

th t X
t

θθ β β
θ θ

+
=

+ +
X   (6)

and 

S(t;X,θ,β)= exp(-exp(X′β)(θti-In(θti+θ+1)+In(θ+1))), 
 (7)

respectively, and the Lindley-Cox death density function:  

 ( ) ( )
2 1

( , ) exp
1

i
l

i

t
f

t
θ

θ
θ θ
 +

=  + + 
i
'Xβ β

( ) ( ) ( )( )exp exp ( ln 1 ln 1 ) ,i it tθ θ θ θ − − + + + + i
'X β          (8)

where θ represent the scale parameter of the Lindley distribution.

Denote the observed and censored event times by ti (i=1,2,…,d) 
and Tk (k=1,2,…,c=n-d), respectively. The log-likelihood for the 
Lindley-Cox model is 

( ) ( ) ( )2 '

1 1 1

ln , { ln ln 1 ln 1ž
d d d

l i i
i i i

L n t tθ θ θ θ
= = =

= + + − + + +∑ ∑ ∑ iXβ β

 ( ) ( ) ( )( )
1

exp ln 1 ln 1 }
d

i i
i

t tθ θ θ θ
=

 − − + + + + ∑ iβ
'X

 ( ) ( ) ( )( )
1

exp ln 1 ln 1
n

k k
k d

T Tθ θ θ θ
= +

 − − + + + + ∑ kβ
'X (9)

The MLEs of θ and β may be found iteratively. The asymptotic 
covariance matrix of the estimators is approximately 

 12 ln ,l

t t

L
θ

−

×

 ∂
−  ∂ ∂ β

             (10)

where β=(β1, β2,…, βp), and t=p+1.

Test of hypotheses
The tests of hypotheses investigated are 

H0: Lβ=β0  (11)

and 

H0: βq=β0q, q=1,2,…,p,                                                                     (12)

where βq and β0q are the qth components of β and β0, respectively, and 
L represents a matrix of coefficients for the linear hypotheses, and β0 
is a vector of constants.

These tests of hypotheses may be achieved using asymptotic 
likelihood inference: the Wald, the score, and likelihood ratio test 
statistics, which are approximately low-order Taylor series expansion 
of each other [16]. These three test statistics are asymptotically 
equivalent with possible differences among them in finite samples; in 
which case, the likelihood ratio test is generally deemed most reliable. 
Since the likelihood ratio test and Wald test are more commonly 
used, these two tests are presented in this study.

Denote the Likelihood Ratio (LR) statistics by Λ. Let ˆˆ( )V β  be the 
estimated covariance matrix of β̂ . The statistics, based on asymptotic 
properties of β̂  (Given a non-singular covariance matrix), for testing 
the H0 in Equation 11 is 

1

0 0( ) 'T L LV L L

−
∧ ∧ ∧ ∧     

    = − −
         

β β β β β
            (13)

Under H0, 2ln  − Λ  and T are asymptotically (AN) distributed as 
chi-square with r degrees of freedom, written 2

( )2ln rχ− Λ   and            where r 
represents the rank of r in the case of T and the number of parameters 
under the alternative hypothesis minus that under the null hypothesis 

ln ( , )lL θ β =

2
( )~ ;T χ r
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in the case of LR. For the hypothesis in Equation 12, the test statistic 
in Equation 13 reduces to a univariate case 

2 1

0 0 ( ) ,q qq qT Vβ β β

−
∧ ∧ ∧   

   = −
                    (14)

where qβ
∧ represents the qth component of β, and 

^
( )qV β  is the qth 

diagonal element of ( )V β
∧ ∧ ; 2

0 (1)~qT χ .

Generating Lindley-Cox times-to-event with covariates
Suppose Ui (i=1,2,…,n) are random numbers, times-to-event (ti) 

may be obtained by solving the following equation (Equation 15) of 
the cumulative hazard H(ti) for (ti) [4,5,17-20] 

0
0

( ) ( )
it

i iH t h w dw y= = −∫                       (15)

where h0 is the baseline hazard rate function, and 

( )exp( ) ln 1 ;i iy u = − −   i
'X β             (16)

 Ui is a uniform random variable, Xi=(x1,x2,…,xp) is a p-component 
row vector of covariates, and β=(β1, β2,…, βp) is the p parameter vector 
corresponding to Xi. The ti’s are obtained by solving for ti in the non-
linear equation that results from replacing h0 in Equation 15 with the 
Lindley hazard function, given by 

( ) ( )2 1
; , 0, 0.

1
t

h t t
t

θ
θ θ

θ θ
+

= > ≥
+ +

            (17)

Times-to-event are generated by specifying the covariate vector Xi, 
which is fixed by design; the parameters (θ and β) used in generating 
the event times are chosen to mirror the data set to be analyzed by 
the authors. The number of components of Xi, p, is chosen to be 6, 
and the components of p are selected at random using the following 
conditions: 14<x1<70, 0<x2<99, x3=1,2, or 3 and x4=x5=x6=0 or 1  The 
dichotomous covariate information x4,x5 and x6 are selected such that 
the proportions of 1 in x4,x5 and x6 are approximately 20%, 40%, and 
60%, respectively. Parameter values are chosen to be (θ=0.4, β1=1.3, 
β2=0.08, β3=0.6, β40.8, β5=0.4, β6=1.2).

It is assumed that a sample of N independent, observable survival 
times (t1,t2,…,tN) are the available information on a population; of 
those, d (d<=N) are the observed times of the event, and the remaining 
k=N-d are right censored. The censoring distribution is assumed to 
follow the Lindley distribution. As an assessment of the sensitivity of 
the model to the censoring distribution, another set of assessments 
was performed by simulating the censoring distribution according to 
a Linley-Cox distribution with different values of the hazard function 
and the results were similar to those presented. The same data sets are 
used in assessing size and power; however, in assessing power, new 
hypotheses produced by inducing 20% deviation of the parameter 
values are tested.

Size and power are relative to the null hypotheses–the null being 
the statement that the parameters are equal to the values that were 
used to simulate the data. Size is the probability of rejecting the null 
given the null is true. Power is the probability of rejecting the null 
given the null is false; adding 20% deviation to simulation parameters 
means null is false, hence a question of power. This percentage 
deviation stems from the fact that many clinical studies aim to detect 
a minimum of 20% difference between treatment and control groups.

In assessing size and power of tests of hypotheses, m=5,000 
independent data sets are generated for each sample size 

(n=25,50,100,250,500,1,000). Newton Raphson method, with 10-8 
convergence criteria, is used to obtain the maximum likelihood 
estimates prior to assessing the size and power of tests. Simulations 
and analyses are performed using SAS/STAT software version 9.4 of 
SAS system for Windows. Copyright 2011 SAS Institute Inc. SAS and 
all other SAS Institute Inc. product or service names are registered 
trademarks or trademarks of SAS Institute Inc., Cary, NC, USA. 
Graphics are generated using R software 2.14.

Results and Comments
Results

Size of tests of hypotheses: The null parameter values and nature 
of the covariates for assessing size of tests for the Lindley-Cox and 
Cox PH models are mentioned in section 4.3. The null parameter 
values are those used in generating ti’s that followed the Lindley-Cox 
distribution.

The proportion . /s sT mα
∧

=  (s=c,l) represents the estimated size of 
test or false positive rates, where Ts denotes the number of times the 
tests rejected H0 out of m replicates. (Tests from Cox’s and Lindley-
Cox models are indexed by c and l, respectively). Tables 1 & 2 show 
the size of tests of hypotheses in percent (i.e., 100 sα

∧

× ) for the tests of 
hypotheses described in section 4.2. Table 1 presents the results for 
complete data, whereas Table 2 presents the results for 20% censored 
data.

Power of tests of hypotheses: The null parameter values used 

H0:β=β0

Sample Size (n)
Model 25 50 100 250 500 1,000

Lindley-Cox I 5.30 4.72 4.80 4.88 5.04 4.92

CI 4.68, 5.92 4.13, 
5.31

4.21, 
5.39

4.28, 
5.48

4.43, 
5.65

4.32, 
5.52

Lindley-Cox II 7.76 5.74 5.46 5.26 5.28 5.00

CI 7.01, 8.50 5.10, 
6.38

4.83, 
6.09

4.64, 
5.88

4.66, 
5.90

4.40, 
5.60

Cox I 11.80 7.32 5.70 5.34 5.66 5.44

CI 10.91, 
12.69

6.61, 
8.08

5.06, 
6.34

4.72, 
5.96

5.02, 
6.30

4.81, 
6.07

Cox II 7.58 6.66 5.70 5.78 5.78 5.42

CI 6.86, 8.35 5.97, 
7.35

5.06, 
6.34

5.13, 
6.43

5.13, 
6.43

4.79, 
6.05

H0: β3=β03

Lindley-Cox I 5.41 4.66 4.98 4.92 5.22 5.74

CI 4.78, 6.04 4.08, 
5.24

4.38, 
5.58

4.32, 
5.52

4.60, 
5.84

5.10, 
6.38

Lindley-Cox II 5.83 4.84 4.86 4.84 5.38 5.86

CI 5.18, 6.48 4.25, 
5.43

4.26, 
5.46

4.25, 
5.43

4.75, 
6.01

5.21, 
6.51

Cox I 10.52 7.02 5.80 5.54 5.80 5.84

CI 9.67, 11.37 6.31, 
7.73

5.15, 
6.45

4.91, 
6.17

5.15, 
6.45

5.19, 
6.49

Cox II 8.96 6.56 5.42 5.62 5.64 5.74,

CI 8.17, 9.75 5.87, 
7.25

4.79, 
6.05

4.98, 
6.26

5.00, 
6.28

5.10, 
6.38

Table  1: Estimated Size of Tests on Covariate Parameters Based on Cox’s and 
the Lindley-Cox Models with Complete Data.

Note: Values of 100 . /s sT msα
∧

= ×  (s=c,l), where Ts is the number of times the tests 
rejected H0 out of m=5,000 replicates for different sample sizes with complete 
data. Test were run at α=0.05. I and II denote Likelihood ratio and Wald chi-
square, respectively. CI=95% confidence interval; L-Cox=Lindley-Cox model.
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in assessing power are β1=1.56, β2=0.096, β3=0.72, β4=0.96, β5=1.68, 
β6=1.44, reflecting a 20% deviation from the original covariate 
parameter values. The results for power of tests of hypotheses for 
complete data are presented in Table 3, for comparison between Cox’s 
and Lindley-Cox for tests of the hypothesis that parameter vector is 
a specific value and for comparison between Cox’s and Lindley-Cox 
model for tests of the hypothesis that a component of parameter 
vector is a specific value. The results for assessing the power of tests 
of hypotheses for data with 20% censoring are presented in Table 4.

Comments
Using simulation, this study assesed size and power of tests of 

hypotheses on parameters of the Lindley-Cox model arising from 
the maximum likelihood estimators (MLE) of those parameters, and 
compared the results of size and power of tests on β arising from 
Lindley-Cox MLE estimator with that arising from Cox’s partial 
maximum likelihood estimator.

The tests of the hypotheses H0:β= β0 and H0:β3= β03 for complete 
and 20% censored data (Tables 1 & 2) are essentially α-level tests with 
the possible exception in small samples. Note that, for 20% censored 
data, the size of the Wald chi-square test for the global null hypothesis 
for the parameters from the Lindley-Cox model is estimated as 8.11% 

for n=25. This may be due to sample size being too small to rely on the 
Wald tests. Likelihood ratio test from the Cox’s PH for n=25 appears 
to have high false positive. Peace [5] and Peace [4] observed similar 
results. A possible explanation is that this sample size may be too 
small to warrant reliance on the asymptotic properties of the partial 
MLE estimator from the Cox’s model.

For power of tests of the hypotheses H0:β= β0+∆ and H0:β3= 
β03+∆ , Cox PH appears to have comparable power as the Lindley-
Cox when the data are complete or contain 20% censored data, with 
possible exceptions for some large samples, i.e., the cases n>100 
where Lindley-Cox seems to have higher power (Table 3). Results 
based on using different values for the hazard function to simulate 
the censoring distribution are consistent with those presented.

Kalbfleisch [8], Peace [5], Efron [9], and Peace [4] demonstrated 
the robustness of inference on the covariate parameters from 
the Cox PH model and the method of estimation to inference on 
covariate parameters using the full maximum likelihood method 
when specifying the time-dependent component of the hazard to be 
constant (exponential distribution), power law (Weibull distribution) 
and exponential law (Gompertz distribution). The comparability of 
the results for size and power assessment of tests on the covariate 

H0:β=β0

Sample Size (n)

Model 25 50 100 250 500 1,000

Lindley-Cox I 6.28 5.92 4.88 5.04 5.32 5.30

CI 5.61, 
6.95

5.27, 
6.27

4.28, 
5.48

4.43, 
5.65

4.70, 
5.94

4.68, 
5.92

Lindley-
Cox II 8.11 6.24 5.58 5.04 5.32 5.34

CI 7.35, 
8.87

5.57, 
6.91

4.94, 
6.22

4.43, 
5.65

4.70, 
5.94

4.72, 
5.96

Cox I 11.96 7.90 5.94 5.04 5.08 5.50

CI 11.06, 
12.86

7.17, 
8.67

5.28, 
6.60

4.43, 
5.65

4.47, 
5.69

4.87, 
6.13

Cox II 5.56 6.52 5.90 5.24 5.10 5.44

CI 4.92, 
6.20

5.84, 
7.20

5.25, 
6.55

4.62, 
5.86

4.49, 
5.71

(4.81, 
6.07)

H0: β3=β03

Lindley-Cox I 6.18 5.66 5.44 5.22 5.14 5.26

CI 5.51, 
6.86

5.02, 
6.30

4.81, 
6.07

4.60, 
5.84

4.53, 
5.75

4.64, 
5.88

Lindley-
Cox II 6.35 5.80 5.20 5.24 5.14 5.36

CI 5.67, 
7.03

5.15, 
6.45

4.58, 
5.82

4.62, 
5.86

4.53, 
5.75

4.74, 
5.98

Cox I 11.12 7.76 6.12 5.58 5.76 5.54

CI 10.25,
11.99

7.02, 
8.50

5.46, 
6.78

4.94, 
6.22

5.11, 
6.41

4.91, 
6.17

Cox II 8.82 7.12 5.88 5.48 5.62 5.44

CI 8.03, 
9.61

6.41, 
7.83

5.23, 
6.53

4.85, 
6.11

4.98, 
6.26

4.83, 
6.07

Table  2: Estimated size of tests on covariate parameters based on Cox’s and the 
Lindley-cox models with 20% censored data.

Note: Values of 100 . /s sT msα
∧

= ×  (s=c,l), where Ts is the number of times the 
tests rejected H0 out of m=5,000 replicates for different sample sizes with 20% 
censored data. Test were run at α=0.05. I and II denote Likelihood ratio and 
Wald chi-square, respectively. CI=95% confidence interval.

H0:β=β0+∆ 

Sample Size (n)

Model 25 50 100 250 500 1,000

L-Cox 
I 9.12 12.46 23.16 58.48 90.36 99.82

CI 8.32, 
9.92

11.54, 
13.38

21.19,
24.33

57.11, 
59.85

89.54, 
91.16

99.70, 
99.94

L-Cox 
II 13.17 15.00 25.18 59.78 90.52 99.89

CI 12.24, 
14.14

14.01, 
15.99

23.98, 
26.38

58.42, 
61.14

89.71,
91,33

99.97,
99.94

Cox I 14.24 11.86 16.48 36.52 66.70 94.40

CI 13.27, 
15.21

10.96, 
12.79

15.45, 
17.51

35.19, 
37.85

55.39, 
68.01

93.76, 
95.04

Cox II 13.44 13.68 18.42 38.66 68.16 94.78

CI 12.49, 
14.39

12.73, 
14.63

17.35, 
19.52

37.31, 
40.01

66.87, 
69.45

94.16, 
95.38

H0: β3=β03 +∆

L-Cox 
I 6.79 8.36 14.26 31.94 57.72 87.76

CI 6.10, 
7.49

7.59, 
9.13

13.29, 
15.23

30.65, 
33.23

56.35, 
59.09

86.85, 
88.67

L-Cox 
II 7.90 10.20 15.74 33.86 59.30 88.22

CI 7.15, 
8.65

9.36, 
11.04

14.73, 
16.75

32.55, 
35.17

57.94, 
60.66

87.33, 
89.11

Cox I 9.64 8.18 10.18 24.98 47.22 79.66

CI 8.82, 
10.46

7.42, 
8.94

9.34, 
11.02

23.78, 
26.18

45.84, 
48.60

78.54, 
80.78

Cox I 9.42 9.22 11.74 26.78 48.44 80.42

CI 8.61, 
10.23

8.42, 
10.02

10.85, 
12.63

25.55, 
28.01

47.05, 
49.83

79.32, 
81.52

Table  3: Estimated Power of Tests on Covariate Parameters Based on Cox’s 
and the Lindley-Cox Models with Complete Data.

Note: Values of 100 . /s sT msα
∧

= ×  (s=c,l), where Ts is the number of times the tests 
rejected H0 out of m=5,000 replicates for different sample sizes with complete 
data. I and II denote Likelihood ratio and Wald chi-square, respectively. ∆ 
denotes 20% of covariate parameters value. L-Cox=Lindley-Cox.
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parameters comparing inference from the Cox PH model with that 
from the Lindley-Cox Model is yet another example of the robustness 
of the Cox PH model to specific functional forms of the time- 
dependent component of the hazard function.

Conclusion
Results of this study suggest that size of tests of hypotheses on 

parameters arising from the maximum likelihood estimator of 
parameters in the Lindley-Cox model are α-level tests for complete 
data and 20% censored data for the hypotheses H0:β= β0 and H0:β1= 
β01. Additionally, the power of tests of hypotheses H0:β= β0+∆ 
and H0:β1= β01+∆, where  represents a 20% deviation in respective 
parameter values on parameters arising from partial maximum 
likelihood estimation of the covariate parameters from the Cox’s 
model are lower for large samples than those arising from maximum 
likelihood estimation of the covariate parameters in the Lindley-Cox 
model.

Real Data Applications
Illustration 1: Freireich et al. [3] provides survival times in weeks 

for terminally ill cancer patients. Survival times in weeks of the 21 

H0:β=β0+∆

Sample Size (n)

Model 25 50 100 250 500 1,000

L-Cox 
I 9.60 11.92 19.38 46.94 81.28 98.80

CI 8.78, 
10.42

11.02, 
12.82)

18.28, 
20.48

45.56, 
48.32

80.20, 
82.36

98.50, 
99.10

L-Cox 
II 12.31 14.20 21.02 48.12 81.72 98.82

CI 11.40, 
13.23

13.23, 
15.17

19.89, 
22.15

46.74, 
49.50

80.65, 
82.78

98.52, 
99.12

Cox I 13.84 11.42 14.16 28.78 54.64 88.94

CI 12.88, 
14.80

10.54, 
12.30

13.19, 
15.13

27.53, 
30.06

53.26, 
56.02

88.07, 
89.81

Cox II 11.30 12.86 16.06 31.18 56.36 89.58

CI 10.42, 
12.18

11.93, 
13.79

15.05, 
17.11

29.90, 
32.46

54.99, 
57.73

88.73, 
90.43

H0:β1=β01+∆

L-Cox 
I 7.09 8.92 12.08 26.16 48.42 78.54

CI 6.38, 
7.81

8.13, 
9.71

11.18, 
12.98

24.94, 
27.38

47.03, 
49.81

77.40, 
79.68

L-Cox 
II 8.31 10.42 13.90 28.30 49.98 79.10

CI 7.54, 
9.08

9.57, 
11.27

12.94, 
14.86

27.05, 
29.55

48.59, 
51.37

77.97, 
80.23

Cox I 10.22 8.38 9.44 20.76 40.00 69.46

CI 9.38, 
11.06

7.61, 
9.15

8.63, 
10.25

19.64, 
21.88

38.64, 
41.36

68.18, 
70.74

Cox II 8.78 9.18 10.64 22.14 41.38 70.46

CI 8.00, 
9.56

8.38, 
9.98

9.79, 
11.49

20.99, 
23.29

40.01, 
42.75

69.20, 
71.7

Table  4: Estimated Power of Tests on Covariate Parameters Based on Cox’s 
and the Lindley-Cox Models for 20% Censored data.

Note: Values of 100 . /s sT msα
∧

= ×  (s=c ,l), where Ts is the number of times the 
tests rejected H0 out of m=5,000 replicates for different sample sizes with 20% 
censored data. I and II denote Likelihood ratio and Wald chi-square, respectively. 
∆ is 20% deviation from parameter values. CI=95% confidence interval. 
L-Cox=Lindley-Cox.

untreated patients were 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 
15, 17, 22 and 23. Kleinbaum and Klein [15] presents detailed analyses 
of the same data set in relation to covariate information, notably the 
log of White Blood Cell (WBC) count. We fit the Lindley-Cox model 
to the data set for untreated patients to assess whether the WBC is 
correlated with survival times.

Estimated coefficients for assessment of correlation between 
survival times and log WBC using different models are presented in 
Table 5. The parameter estimates from the models are consistent with 
the log WBC count been associated with survival times. The Linldey-
Cox appears to show a better fit as suggested by smaller Akaike 
Information Criteria (AIC) [22] and Bayesian Information Criteria 
(BIC) [23] (Table 5). These model comparison approaches enable 
contrast of non-nested models using log-likelihood but penalize for 
model complexity.

Figure 1 presents the observe and expected survival probabilities; 
the plot suggests that the Lindley-Cox survival probabilities 
approximates well that of the observed (Kaplan-Meier). A chi-square 
goodness of fit test based on the intervals (0,5],(5,10],(10,15],(15,23) 
failed to reject the null hypothesis that the Lindley-Cox density 

Parameters Peace Lindley-Cox Cox

θ
∧

 (SE) 0.0143 (0.01253) 0.02144 (0.0112) -

β
∧

 (SE) 0.6967 (0.2631) 1.264 (0.307) 1.2807 (0.40054)

BIC 132.1 121.7 -

AIC 130.0 119.6 -

Table  5: Estimated Coefficient for Correlation Assessments for the Freireich et 
al. (1963) Data using the Peace’s Negative Exponential and Lindley-Cox Models.

Note: -2 log likelihood, AIC, and BIC were provided for only Parametric models 
whose estimates are based full maximum likelihood estimator. (Peace=Negative 
exponential model fitted by Peace[5]).

Figure  1: Survival Probabilities for the Freireich et al. (1963) Data.
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provides a good fit to the data 2
3( 1.678; 0.6418)pχ = = .
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