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muscle blood capillary macula occludens junctional pore complexes 
(upper limit of pore size 4-to-5 nm) as well as the least permeaselective 
endocrine and exocrine blood capillary diaphragm fenestrated trans-
endothelial pores (upper limit of pore size 6-to-7 nm) [5], which are 
physiological VEGF concentration-induced diaphragm fenestrated 
blood capillaries [6].

As it has been long known that local inflammatory mediators 
such as VEGF and bradykinin, present at supra-physiologic local 
concentrations in the milieu diseased tissues, induce the co-opted 
neoangiogenesis of hyper-permeable blood capillaries in diseased 
tissues (i.e. solid tumors) [6-10], in the 1990s there had been an interest 
in developing clinical useful systemic intra-arterial and intravenous 
vasomodulation strategies employing bradykinin [11,12] and its 
synthetic proteolytically-resistant analogue labradimil (RMP-7, aka 
Cereport) [13-15] to temporarily increase the permeability-surface 
area product of solid tumor blood capillaries to achieve greater drug 
concentration of small molecule chemotherapeutics across tumor 
blood capillary barriers, the Central Nervous System (CNS) solid 
tumor Blood-Brain Tumor Barrier (BBTB) and the non-CNS solid 
tumor Blood-Tumor Barrier (BTB). Henceforth, vasomodulator 
effectiveness at increasing small molecule chemotherapeutic or 
surrogate small molecule accumulation in tumor tissue has been 
studied in rodent solid tumor models by Quantitative Autoradiography 
(QAR) [11-14], a methodology that requires harvesting of tumor 
tissue to determine the experimental endpoint tumor concentration 
of a bolus-infused radiolabeled small molecule chemotherapeutic (i.e. 
14C-carboplatin) or a radio labeled small molecule chemotherapy 
surrogate [i.e. alpha-Aminoisobutyric Acid (14C-AIB)] after the 
systemic co-infusion of a vasomodulator at a constant rate with 
frequent blood plasma concentration measurements throughout 
the vasomodulator infusion period for integrated determination of 
the influx rate constant (Ki; min-1) at the experimental endpoint 
vis a vis bi-compartmental (intravascular space, intracellular space) 
uni-directional uni-parameter pharmacokinetic modeling. The 
major pitfall of QAR is accurate determination of the blood plasma 
pharmacokinetic curve in the setting of vasomodulator-induced 
hemodyamic instability (personal observation), and as such, the 
increase in tumor tissue radioisotope concentration (compared 
non-vasomodulated controls) has been attributed to an increase in 
vasomodulator-induced local BBTB or BTB permeability.

Editorial
Small biomolecule therapeutics remains the cornerstone for 

treatment of human disease states, mostly due to their oral (gastro-
intestinal) and inhaled (pulmonary) bioavailability across inter-
epithelial junctional pore complexes. As such, the determinants 
of passively-selective inter-epithelial junctional pore complex 
permeation have recently been determined to be the conserved 
biophysical properties of the biomolecules [1], for less hydrophilic 
hydrophiles and lipophiles the limiting conserved biophysical 
property is primarily the Van Der Waals Diameter (vdWD), and for 
more hydrophilic hydrophiles the conserved biophysical properties 
are relative hydrophilicity and the vdWD: (i) Less hydrophilic 
hydrophiles and lipophiles are inter-epithelial junctional pore 
complex permeable to an vdWD of at least 0.81 nanometers (nm) [1], 
and upon entering systemic circulation, those > 0.78 nm in diameter 
interact with intravascular proteins +/- non-channel receptor 
proteins or directly with cell membranes, while those < 0.78 nm in 
diameter further permeate across cell membrane channel pores [2,3]; 
whereas, (ii) More hydrophilic small biomolecules are inter-epithelial 
junctional pore complex permeation restricted [1], as is the case of 
non-chelating anionic hydrophiles as well as chelating hydrophiles 
with maintained circumferential anionicity such as [Gd3+DOTA]2-, 
a strong cyclic Gd3+ chelator and extracellular MRI contrast agent 
[4], with a predicted vdWD of 0.88 nm and a predicted Log P of 
-15.50 at gastric pH < 4 (pH < 4 Log Pow-to-vdWD ratio of -17.54 
nm-1) and a predicted Log Pow of -10.7 at intestinal pH > 4 (pH > 4 
Log Pow-to-vdWD ratio of -12.11 nm-1), which when administered 
intravenously is self-non-interacting as well as non-interacting with 
the biological system, and permeates across less permeaselective pores 
[1,5], for example, across the less permeaselective renal podocyte 
inter-epithelial junctional pore complexes (upper limit of pore size 
2-to-3 nm) and across the lesser permeaselective skeletal and cardiac 
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Model-based T1-weighted quantitative dynamic-contrast 
enhanced MRI (qDC-E MRI) has been extensively utilized for 
modified Toft’s bi-compartmental (intravascular plasma space, 
extracellular space) bi-directional 4-parameter pharmacokinetic 
modeling of Ktrans (forward rate constant, min-1), Kep (reverse rate 
constant, min-1), Ve (tumor tissue extra-vascular extracellular space, 
fract) and Vp (tumor tissue vascular blood plasma volume, fract) 
[16,17]. In more recent years, the T1-weighted qDC-E MRI-modified 
Toft’s model-derived Ktrans for [Gd3+DTPA]2- has been validated 
against the QAR-derived Ki for 14C-AIB in the orthotropic rodent 
glioma-2 (RG-2 glioma) model [18], an anaplastic intra-cranial tumor 
which is histologically homogeneous in character similar to a WHO 
Grade III glioma [19]. Building on this finding, the Toft’s model 
model-based [Gd3+DTPA]2- T1-weighted qDC-E MRI with residual 
contrast correction (for the first contrast agent bolus decay) has been 
utilized to investigate the conserved basis for vasomodulator-induced 
increases in BBTB permeability to [Gd3+DTPA]2- during infusions 
of various bradykinins such bradykinin itself and labradimil (with 
each glioma-bearing rodent subject serving as its own control) [20], 
and it has been determined that the observed vasomodulator-induced 
increases in BBTB permeability and tumor tissue accumulation of 
small molecules is due to systemic vasodilation and a decrease in 
blood pressure, which results in a decrease in renal filtration fraction 
and in a concomitant increase in the blood plasma half-life of small 
molecules such as [Gd3+DTPA]2- [20]. 

[Gd3+DTPA/DOTA]2- conjugated polyamidoamine 
(PAMAM) Ethyldiamine (EDA) and Diaminobutane (DAB) core 
dendrimer nanoparticle-based contrast agents (~1.5 nm diameter 
Gd-Generation 1 to 13+/-1 nm diameter Gd-Generation 8) have 
been utilized for non-quantitative DC-E MRI-based detection of 
microvascular permeability alterations in small animal models [21-
23], and 5-to-6 nm size low-molecular weight (~36 kDa) PAMAM 
dendrimer nanoparticles have been utilized for evaluation of 
therapeutic potential in the same [24-27], however the optimal 
biophysical properties of these hydration-resistant dendritic 
conjugate nanoparticles including the optimal size range for effective 
drug delivery had not been realized until a few years later. Between 
mid-2006 and early-2008, the following were determined: (i) There is 
more focal RG-2 glioma tumor tissue distribution of the non-dense 
lowly conjugated 24 kDa Gd-Generation 4 dendrimer (LC Gd-G4, 
~30% conjugated; 5-to-6 nm diameter) as per a lower modeled tumor 
tissue extra-vascular extracellular space (Ve), which does not possess 
a sufficiently long blood plasma half-life due to its renal clearance 
as it is subject to proteolytic degradation (less dense 24 kDa, 5-to-
6 nm) while it has diffusion-limited tumor tissue distribution due 
to its 5-to-6nm size [28,29]; (ii) Model-based T1-weighted qDC-E 
MRI fails at the standard conjugated 40 kDa Gd-G4 dendrimer (Std 
Gd-G4, ~50% conjugated; 5-to-6 nm diameter) as the blood plasma 
pharmacokinetic curve approaches constancy due to decreased 
systemic proteolytic degradation of the Std Gd-G4 dendrimer (more 
dense 40 kDa, 5-to-6 nm diameter) [8,29]; (iii) (a) Non-model based 
T1-weighted qDC-E MRI without subsequent pharmacokinetic 
modeling can be used to accurately assess the accumulation over time 
of various sized [Gd3+DTPA]2-conjugated dendrimer nanoparticles, 
Gd-G4 to Gd-G8 (5-to-14 nm), within the tumor tissue interstitium, 
which simply generates voxel-by-voxel Gd concentration-maps based 
on the post-contrast enhancement R1-to-pre-contrast enhancement 

R0 ratio adjusted by mM•sec/r1, where R (1/sec) is the in vivo dual-
flip angle Fast-Field Echo (FFE)-determined longitudinal relaxivity 
and where r1 (1/ mM• sec) is the in vitro Spin Echo (SE)-determined 
contrast agent molar relaxivity (wrt Gd), in which case conjugated 
chelated Gd (mM) accumulation can be measured voxel-by-voxel 
in RG-2 glioma solid tumor interstitium for the various sized Gd-
dendrimers over prolonged duration (>= 2 hours) [28-31]; (iii) (b) 
The upper limit of pore size of the BBTB and the BTB is at 12 nm, 
between the size of the Gd-Gd-7 dendrimer (~11+/-1 nm diameter), 
which is permeable across both the BBTB and the BTB, and the 
size of the Gd-G8 dendrimer (~13+/-1 nm diameter), which is 
restricted-to-permeation across both the BBTB and the BTB [28,30]; 
and (iii) (c) The most effective size range for tumor interstitium 
accumulation is the 8-to-9 nm size range (Gd-G5; ~85 kDa, est at 
8.5 nm diameter; blood plasma t 1/2 6-8 hrs) due to optimal blood 
plasma half-life in context of optimal permissive BBTB and BTB 
permeation irrespective of tumor volume [28-30], whereby the 8-to-9 
nm size Gd-G5 dendrimer is passively selective for the solid tumor 
interstitium across the BBTB and the BTB over other normal tissues 
supplied by diaphragm fenestrated blood capillary [5,32].

Based on the above observations, the 8-to-9 nm size Gd-G5 
dendrimer nanoparticle is the optimal size for passively selective 
accumulation in the solid tumor interstitium, irrespective of solid 
tumor host site, which therefore has been selected for the purpose 
of developing a theranostic dendrimer nanoparticle for quantifiable 
imageable effective transvascular delivery of small molecule 
chemotherapeutics into the solid tumor interstitium. As such, a 
prototype Gd-G5 dendrimer-based theranostic nanoparticle has 
been developed to explore therapeutic potential of such a dendritic 
conjugate, in which a ~50% [Gd3+DTPA]2- conjugated dendrimer 
has been additionally ~10% conjugated with doxorubicin (0. 95 nm 
diameter) via labile covalent hydrazone bonds (~0.5 nm) to free 
exterior amides resulting in a ~9.5 nm (hydrodynamic diameter, 
HD) exteriorly cationic Gd-G5 theranostic dendrimer nanoparticle 
[29,33]. Even as this exteriorly cationic Gd-G5 theranostic dendrimer 
is in the Gd-G6 dendrimer size range (which accumulates to lesser 
extent in tumor tissue than the Gd-G5) [28-30], when administered at 
the standard 0.09 mmol Gd/kg body weight (~100 mg dendrimer/ kg 
body weight) dose, the prototype Gd-G5 theranostic dendrimer being 
cationic, accumulates within orthotopic RG-2 glioma solid tumor 
tissue [29,33] in the accumulation range for the non-chemotherapy 
conjugated Gd-G5 dendrimer nanoparticles (100-300 uM wrt 
conjugated chelated Gd and 1 uM-3 uM wrt the Gd-G5 dendrimer 
nanoparticle itself) [28-30], wherein the concentration of doxorubicin 
in the tumor interstitium can be estimated to be within the 10 uM–
30 uM range, that which results in almost complete orthotropic 
RG-2 glioma tumor regression after 1 dose within 24 hours [29,33], 
however, with significant systemic toxicity that precludes longer-
term evaluation/treatment [29,33] in contrast to its exteriorly anionic 
non-chemotherapy conjugated Gd-G5 dendrimer counterpart, which 
when administered intravenously permits longer-term evaluation of 
rodent subjects [29,30].

 In closing, it can asserted that systemically administered 
nanoparticles with exterior cationicity and interior anionicity are 
systemically cationiotoxic irrespective of size range, in contrast 
to those with exterior anionicity and interior cationicity that are 
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systemically non-toxic due to no self-self and no biological system 
interactions and can be accurately quantitatively assessed by qDC-E 
MRI [31]. As exteriorly anionic and dense nanoparticles of dendritic 
architecture are approved for pre-clinical use being systemically 
non-toxic (i.e. Gadomer-17, aka Gd-DOTA 17 dendritic conjugate; 
17 kDa) [34] and resistant to proteolytic degradation, respectively, 
8-to-9 nm size exteriorly anionic dense [Gd3+DOTA]2- conjugated 
nanoparticles of dendritic architecture with labilely conjugated small 
molecule chemoxenobiotics on the interior have the potential to be 
curative due to passively selective permeation across hyper-permeable 
blood capillary barriers of diseased tissues with an upper limit of pore 
size at 12 nm (i.e. BBTB, BTB) in context of a prolonged blood plasma 
half-life for effective accumulation within diseased tissue interstitia 
[35].
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