
Citation: Padghan S, Choudhare SS, Chopade M. Catalytic Application of Iron for Towards Synthesis of 
Quinoxaline. Austin J Bioorg & Org Chem. 2025; 3(1): 1006.

Austin Journal of Bioorganic & Organic Chemistry
Volume 3, Issue 1- (2025)
www.austinpublishinggroup.com
Chopade M © All rights are reserved

Austin Journal of Bioorganic & Organic 
Chemistry

Open Access

Abstract
The study investigates the synthesis of substituted quinoline derivatives 

known for their biological activities and structural versatility which serve as 
pivotal building blocks in organic synthesis. A series of substituted quinoline 
derivatives were synthesized by one-pot cyclocondensation between substituted 
phenyldiamine with phenyacyl bromide by Fe(acac)3 as catalyst at 60 0C for 
50–80 min. afforded quinoxalines (3a–3m) with good to excellent yields (88-94 
%) with high purity. The used techniques provide the practical benefits of facile 
isolation, high yields and cascading one pot condensation.
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Introduction
Quinoxalines represent a significant class of nitrogen-containing 

heterocyclic compounds that have attracted considerable attention 
in recent decades due to their diverse biological and pharmaceutical 
potentials [1]. Although these compounds are rarely found in 
natural sources, they have been widely synthesized through a 
variety of chemical methodologies [2]. With the growing emphasis 
on environmental sustainability and green chemistry, significant 
efforts have been directed toward the development of eco-friendly 
and efficient synthetic strategies for quinoxaline derivatives. These 
approaches often utilize recyclable catalysts, non-toxic solvents, 
and mild reaction conditions, aligning with the principles of green 
chemistry [3].

In recent years, quinoxalines have emerged as highly promising 
scaffolds in medicinal chemistry owing to their broad spectrum of 
biological activities [4]. Numerous quinoxaline-based derivatives 
have demonstrated potent bioactivities, including antitubercular [5]. 
anti-inflammatory, antioxidant [6] antifungal, anticancer, anti-HIV 
[7] and antiprotozoal properties [8]. Their structural versatility and 
ease of functionalization have made them valuable templates for drug 
design and development.

Moreover, many clinically approved drugs and investigational 
agents incorporate a quinoxalinyl moiety as a key pharmacophoric 
unit within their molecular framework, which significantly 
contributes to their therapeutic efficacy. The incorporation of the 
quinoxaline nucleus often enhances target specificity, bioavailability, 
and metabolic stability. Examples of such drugs are illustrated in 
Figure 1, showcasing the relevance of this heterocyclic core in modern 
pharmaceutical chemistry. Quinoxalines are nitrogen-containing 
heterocycles found in various natural and synthetic compounds. 

They serve as key building blocks in heterocyclic synthesis and play a 
crucial role in organic and medicinal chemistry. Recently numerous 
methods have been developed to diverse synthesis of quinoxaline 
derivatives via transition metal [8]. In recent years, focusing on 
several environmental issues and considering the pharmaco- logical 
importance of quinoxaline scaffolds there are numerous synthetic 
methods have been reported. Some of them are the condensation 
of o-phenylenediamine with 1,2-dicar-bonyl compounds. Among 
the aforementioned protocols, condensation of o-phenylenediamine 
with phe-nacyl bromides in the solid phase is highly preferred [9-
15], (NH4)6Mo7O24·4H2O [16], PVPPOTf [17] and Ga(ClO4)3 [18]. 
As well as by using transition metal catalysts [19,20] and also using 
various substrate to synthesis of quinoxaline includes, Synthesis of 
spiro-indeno[1,2- b]quinoxalines via a g-Fe2O3@Oxo-triazolidin-
sultone nanocatalyst, CuBr/O2 catalytic system. oxidative cyclization 
between deoxybenzoins and 1,2-phenylenediamines in the presence 
of a catalytic amount of a Cu(II)-complex of a zwitterionic calix, 
Ni(II)/1,10-phenanthroline-catalyzed dehydrogenative coupling 
reaction for the synthesis of quinoxalines,  quinoxalines  by using 

 Figure 1: Quinoxaline core with natural and bioactive compounds.
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heterogeneous solid zinc oxide nanoparticle loaded mesoporous silica 
(ZnOKIT-6).

Experimental Section
Chemicals and solvents were procured from Sigma Aldrich and 

Spectrochem. Melting points were determined in open capillary 
and are uncorrected. Reactions were monitored by thin layer 
chromatography (TLC) on silica gel plates (GF 254) using UV light to 
visualize the course of the reactions. 1H NMR spectra and 13C NMR 
spectra were recorded Bruker Avance 300-400 (FT-NMR) and Bruker 
DRX-300 instruments, respectively, using CDCl3 and DMSO-d6 as 

solvent. Chemical shifts are reported in δ ppm with TMS as internal 
standard. High-resolution mass spectra (HRMS) were obtained 
using the Agilent 6520 (Q-TOF) ESI-HRMS instrument. Routine 
monitoring of reaction was performed by TLC using 0.25 mm E. 
Merck precoated silica gel TLC plates (60 F254) hexane: ethyl acetate 
as eluent [21-30].

General Experimental Procedure for Synthesis of 
Benzothiazole

In two a neck round bottom flask was charged with a mixture of 
Phenacyl bromide (2a–m) (0.001mol) and Fe(acac)3 catalyst (40 mg) 
were dissolved in EtOH (5 mL) at room temperature for 10 min. Then 
O-phenyldiamine (1a–b) (0.001mol) was added slowly to the reaction 
mixture at 600C. The progress of the reaction was monitored by thin-
layer chromatography (TLC). The reaction mixture was diluted with 
ethyl acetate (20 mL) and diluted HCl (5 mL). The combined organic 
layers were dried using anhydrous MgSO4, filtered, and the solvent 
was removed by evaporation. The crude product was purified by 
crystallization using ethanol to afford the pure 2-pheny quinoxalines 
(3a–3m). All desired product characterised by IR, H1-NMR, C13NMR 
and melting points of the desired products were found to be in good 
agreement with those reported in the literature [31-41].

Phenylquinoxaline (3a)8

Isolated as a Yellow Solid. Yield 90 %; Mp. 88 oC (Lit14 75-76 oC). 
IR (KBr, cm-1): νmax 3447, 3059, 2921, 2852, 1631, 1544, 1487, 1314, 
1224, 1028, 956, 766 cm.-1 1H NMR (500 MHz, Chloroform-d) δ 9.32 
(s, 1H, =CH), 8.11-8.21 (m, 4H, Ar-H), 7.71-7.80 (m, 2H), 7.50-7.59 

Figure 2: Plausible Mechanism for synthesis of Quinoxaline.

Table 1: Screening of reaction condition with respect to solvent 3a.
Sr. No Solvent Catalyst Yield %

1 H2O Fe(acac)3 40
2 MeOH Fe(acac)3 87
3 EtOH Fe(acac)3 95
4 DCM Fe(acac)3 75
5 AcCN Fe(acac)3 78
6 DMF Fe(acac)3 64
7 Dioxane Fe(acac)3 58
8 EtOH No catalyst 20

NR: no reaction. aReaction conditions: Phenacyl bromide (0.001 mol), o-phenylenediamine (0.001 mol), 20mol 
% Fe(acac)3 in 10 ml EtOH, at 60 0C for 50 min. b Isolated yields.

Scheme 1: Synthesis of Quinoxalines (3a–3m) using Fe(acac)3 catalyst.

Scheme 2: Plausible mechanism for the synthesis of quinoxaline derivatives.
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(m, 3H, Ar-H). 13C NMR (100 MHz, CDCl3) δ (ppm): 151.9, 143.5, 
142.5, 141.7, 136.9, 130.3, 130.3, 129.8, 129.6, 129.2, 127.7. HRMS 
(ESI)+ m/z calcd. for C14H10N2 (M+H)+: 207.0923; found 207.0926.

(4-Flurophenyl) benzothiazole (3b)4 

Isolated as a Yellow Solid, Yield 90%; Mp. 113-119 oC (Lit14 112-
118 oC). IR (KBr, cm-1): ῡmax 3421, 2927, 1633, 1583, 1534, 1475, 1418, 
1101, 1073, 955, 830, 759 cm.-1 1H NMR (300 MHz, CDCl3) δ 9.25 (s, 
1H, =CH), 8.07-8.19 (m, 4H, Ar-H), 7.68-7.78 (m, 2H, Ar-H), 7.18-
7.24 (m, 2H, Ar-H). 13C NMR (75 MHz, CDCl3) δ (ppm): 165.9, 162.6, 
150.7, 142.9, 142.2, 141.5, 133.0, 132.9, 130.4, 130.2, 129.6, 129.6, 
129.5, 129.2, 116.4, 116.1. HRMS (ESI)+ m/z calcd. for C14H9FN2 
(M+H)+: 225.0823; found 225.0852.

(4-Chloro phenyl)-Quinoxaline (3c)1

Isolated as a Yellow solid, Yield 94%; Mp: 128-132 °C; IR (KBr, 
cm-1):  νmax 2924, 1591, 1537, 1479, 1310, 1122, 1043, 958, 832, 753 
cm-1. 1H NMR (400 MHz, CDCl3) δ 9.28 (s, 1H, =CH), 8.09-8.15 (m, 
4H), 7.72-7.80 (m, 2H), 7.51 (d, J = 8.5 Hz, 2H). 13C NMR (100 MHz, 
CDCl3) δ (ppm): 150.7, 142.9, 142.3, 141.8, 136.7, 135.3, 130.6, 129.9, 
129.7, 129.5, 129.3, 128.9. (CH3). MS (ESI):m/z calcd for C14H9ClN2 
[M+H] +: 241.3113, found 241.0512.

(4-Bromo phenyl)-Quinoxaline (3c) 

Isolated as a pale yellow solid, Yield 92%; Mp. 128-134 °C IR (KBr, 
cm-1):  νmax 3443, 2925, 1634, 1583, 1536, 1481, 1421, 1307, 1121, 1070, 
954, 827, 710 cm-1 1H NMR (400MHz, CDCl3) δ 9.26 (s, 1H =CH), 
8.04-8.13 (m, 4H, Ar), 7.65-7.79 (m, 4H, Ar). 13C NMR (100 MHz, 
CDCl3) δ (ppm): 150.7, 142.8, 142.3, 141.8, 135.7, 132.4, 130.6, 129.9, 
129.7, 129.3, 129.1, 125.1. MS (ESI): m/z calcd for C14H9BrN2 [M+H] 

+: 287.21, found 287.07. 

Results and Discussion 
The synthesis of quinoxalines was carried out by reacting 

substituted phenacyl bromides/benzil (2a–2m) (0.001 mol) and 
o-pheneylenediamine (1a–1b) (0.001 mol) in the presence of Fe(acac)3 
as a catalyst. Further, the reaction mass was stirred at 60 ◦C for 50–80 
min. afforded quinoxalines (3a–m) with excellent yields and high 
purity.

This reaction is outlined in Scheme 1. The structures of all the 
synthesized quinoxalines (3a–m) are shown in Figure 2. The model 
reaction was carried out in presence of o-pheneylenediamine (1a) and 
phenacyl bromide (2a) as shown in Scheme 1.

The optimization of the reaction was performed by varying the 
reaction parameters, such as reaction time, solvent, and temperature. 
It was observed that the quinoxaline formation in ethanol solvent 
proceeds with an excellent yield at 60 ◦C for 50 min (Table 1, entry 3). 
no reaction was observed when water was used as the solvent.

The plausible mechanism for the quinaxolines synthesis was 
depicted in Scheme 3, which involves the protonation of the carbonyl 
group of phenacyl bromide over Fe(acac)3 catalyst (A). Later on, it 
reacts with o-pheneylenediamine that involves dehydration and 
dehalogenation simultaneously resulting in the formation of cyclic 
product B, which is readily oxidized in air to form desired product C.

Conclusion
In conclusion, we have developed a mild, efficient, and 

environmentally benign synthetic protocol for the synthesis of 
quinoxalines (3a–m) from substituted phenacyl bromides and 
o-pheneylenediamines using Fe(acac)3 catalyst. The key feature of 
the current protocol involves simple reaction conditions, no side 
reaction with the formation of the desired product in high yield. The 
present method is an alternative to the conventional processes for 
the synthesis of quinoxalines. The catalyst could be recovered several 
times without loss of catalytic activity, which makes the process cost-
effective. 72-95%. 
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