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Abstract

The study investigates the synthesis of substituted quinoline derivatives
known for their biological activities and structural versatility which serve as
pivotal building blocks in organic synthesis. A series of substituted quinoline
derivatives were synthesized by one-pot cyclocondensation between substituted
phenyldiamine with phenyacyl bromide by Fe(acac), as catalyst at 60 °C for
50-80 min. afforded quinoxalines (3a—3m) with good to excellent yields (88-94
%) with high purity. The used techniques provide the practical benefits of facile
isolation, high yields and cascading one pot condensation.
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Introduction

Quinoxalines represent a significant class of nitrogen-containing
heterocyclic compounds that have attracted considerable attention
in recent decades due to their diverse biological and pharmaceutical
potentials [1]. Although these compounds are rarely found in
natural sources, they have been widely synthesized through a
variety of chemical methodologies [2]. With the growing emphasis
on environmental sustainability and green chemistry, significant
efforts have been directed toward the development of eco-friendly
and efficient synthetic strategies for quinoxaline derivatives. These
approaches often utilize recyclable catalysts, non-toxic solvents,
and mild reaction conditions, aligning with the principles of green
chemistry [3].

In recent years, quinoxalines have emerged as highly promising
scaffolds in medicinal chemistry owing to their broad spectrum of
biological activities [4]. Numerous quinoxaline-based derivatives
have demonstrated potent bioactivities, including antitubercular [5].
anti-inflammatory, antioxidant [6] antifungal, anticancer, anti-HIV
[7] and antiprotozoal properties [8]. Their structural versatility and
ease of functionalization have made them valuable templates for drug
design and development.

Moreover, many clinically approved drugs and investigational
agents incorporate a quinoxalinyl moiety as a key pharmacophoric
unit within their molecular framework, which significantly
contributes to their therapeutic efficacy. The incorporation of the
quinoxaline nucleus often enhances target specificity, bioavailability,
and metabolic stability. Examples of such drugs are illustrated in
Figure 1, showcasing the relevance of this heterocyclic core in modern
pharmaceutical chemistry. Quinoxalines are nitrogen-containing
heterocycles found in various natural and synthetic compounds.
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Figure 1: Quinoxaline core with natural and bioactive compounds.

They serve as key building blocks in heterocyclic synthesis and play a
crucial role in organic and medicinal chemistry. Recently numerous
methods have been developed to diverse synthesis of quinoxaline
derivatives via transition metal [8]. In recent years, focusing on
several environmental issues and considering the pharmaco- logical
importance of quinoxaline scaffolds there are numerous synthetic
methods have been reported. Some of them are the condensation
of o-phenylenediamine with 1,2-dicar-bonyl compounds. Among
the aforementioned protocols, condensation of o-phenylenediamine
with phe-nacyl bromides in the solid phase is highly preferred [9-
15], (NH,) Mo,0,-4H,0 [16], PVPPOTS [17] and Ga(ClO,), [18].
As well as by using transition metal catalysts [19,20] and also using
various substrate to synthesis of quinoxaline includes, Synthesis of
spiro-indeno[1,2- b]quinoxalines via a g-Fe203@Oxo-triazolidin-
sultone nanocatalyst, CuBr/O, catalytic system. oxidative cyclization
between deoxybenzoins and 1,2-phenylenediamines in the presence
of a catalytic amount of a Cu(II)-complex of a zwitterionic calix,
Ni(II)/1,10-phenanthroline-catalyzed ~ dehydrogenative  coupling
reaction for the synthesis of quinoxalines, quinoxalines by using
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Table 1: Screening of reaction condition with respect to solvent 3a.

Sr. No Solvent Catalyst Yield %
1 H,O Fe(acac), 40
2 MeOH Fe(acac), 87
3 EtOH Fe(acac), 95
4 DCM Fe(acac), 75
5 AcCN Fe(acac), 78
6 DMF Fe(acac), 64
7 Dioxane Fe(acac), 58
8 EtOH No catalyst 20
NR: no reaction. 2Reaction conditions: Phenacyl bromide (0.001 mol), o-phenylenediamine (0.001 mol), 20mol
% Fe(acac), in 10 ml EtOH, at 60 °C for 50 min. ®Isolated yields.
Figure 2: Plausible Mechanism for synthesis of Quinoxaline.
Srno | Amine Pheacyl bromide Product Yield
1 o-pheneylens diamine 4-Chloro Phenacylbromide B 88
z o-pheneylene diamine 4-Flurn phenacylbromide 50
3 o-pheneylens diamine 4-Chloro Phenacylbromide : 94
Z o-pheneylene diamine 3,4 dichioro P henacylbromide EE)
3d
o-pheneylens diamine 4-bromo Phenacylbromide N 92
3 o-pheneylens diamine 3-nitro Phenacylbromide : 89
7 o-pheneylens diamine 4-Mitro Phenacylbromide 88
[ I =
=
3g
8 o-pheneylens diamine 4 Cyano Phenacylbromide : 92
[
3h

heterogeneous solid zinc oxide nanoparticle loaded mesoporous silica
(ZnOKIT-6).

Experimental Section

Chemicals and solvents were procured from Sigma Aldrich and
Spectrochem. Melting points were determined in open capillary
and are uncorrected. Reactions were monitored by thin layer
chromatography (TLC) on silica gel plates (GF 254) using UV light to
visualize the course of the reactions. "H NMR spectra and *C NMR
spectra were recorded Bruker Avance 300-400 (FT-NMR) and Bruker
DRX-300 instruments, respectively, using CDCl, and DMSO-d, as

solvent. Chemical shifts are reported in § ppm with TMS as internal
standard. High-resolution mass spectra (HRMS) were obtained
using the Agilent 6520 (Q-TOF) ESI-HRMS instrument. Routine
monitoring of reaction was performed by TLC using 0.25 mm E.
Merck precoated silica gel TLC plates (60 F254) hexane: ethyl acetate
as eluent [21-30].

General Experimental Procedure for Synthesis of
Benzothiazole

In two a neck round bottom flask was charged with a mixture of
Phenacyl bromide (2a-m) (0.001mol) and Fe(acac), catalyst (40 mg)
were dissolved in EtOH (5 mL) at room temperature for 10 min. Then
O-phenyldiamine (1a-b) (0.001mol) was added slowly to the reaction
mixture at 60°C. The progress of the reaction was monitored by thin-
layer chromatography (TLC). The reaction mixture was diluted with
ethyl acetate (20 mL) and diluted HCI (5 mL). The combined organic
layers were dried using anhydrous MgSO,, filtered, and the solvent
was removed by evaporation. The crude product was purified by
crystallization using ethanol to afford the pure 2-pheny quinoxalines
(3a-3m). All desired product characterised by IR, H'-NMR, C*NMR
and melting points of the desired products were found to be in good
agreement with those reported in the literature [31-41].

Phenylquinoxaline (3a)?

Isolated as a Yellow Solid. Yield 90 %; Mp. 88 °C (Lit1*75-76 °C).
IR (KBr, cm™): V.. 3447, 3059, 2921, 2852, 1631, 1544, 1487, 1314,
1224, 1028, 956, 766 cm! 'H NMR (500 MHz, Chloroform-d) § 9.32
(s, 1H, =CH), 8.11-8.21 (m, 4H, Ar-H), 7.71-7.80 (m, 2H), 7.50-7.59
Scheme 1: Synthesis of Quinoxalines (3a-3m) using Fe(acac), catalyst.
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Scheme 2: Plausible mechanism for the synthesis of quinoxaline derivatives.
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(m, 3H, Ar-H). “C NMR (100 MHz, CDCL,) § (ppm): 151.9, 143.5,
142.5, 141.7, 136.9, 130.3, 130.3, 129.8, 129.6, 129.2, 127.7. HRMS
(ESI)* m/z caled. for C,,H, N, (M+H)*: 207.0923; found 207.0926.

(4-Flurophenyl) benzothiazole (3b)*

Isolated as a Yellow Solid, Yield 90%; Mp. 113-119 °C (Lit1*112-
118 °C). IR (KBr, cm™): o 3421, 2927, 1633, 1583, 1534, 1475, 1418,
1101, 1073, 955, 830, 759 cm™! 'H NMR (300 MHz, CDCIS) $9.25 (s,
1H, =CH), 8.07-8.19 (m, 4H, Ar-H), 7.68-7.78 (m, 2H, Ar-H), 7.18-
7.24 (m, 2H, Ar-H). *C NMR (75 MHz, CDCL) § (ppm): 165.9, 162.6,
150.7, 142.9, 142.2, 141.5, 133.0, 132.9, 130.4, 130.2, 129.6, 129.6,
129.5, 129.2, 116.4, 116.1. HRMS (ESI)* m/z calcd. for C, HFN,
(M+H)*: 225.0823; found 225.0852.

(4-Chloro phenyl)-Quinoxaline (3c)’

Isolated as a Yellow solid, Yield 94%; Mp: 128-132 °C; IR (KBr,
cm): Vo 2924, 1591, 1537, 1479, 1310, 1122, 1043, 958, 832, 753
cm™. 'H NMR (400 MHz, CDCI3) § 9.28 (s, 1H, =CH), 8.09-8.15 (m,
4H), 7.72-7.80 (m, 2H), 7.51 (d, ] = 8.5 Hz, 2H). *C NMR (100 MHz,
CDC]S) ) (ppm): 150.7, 142.9, 142.3, 141.8, 136.7, 135.3, 130.6, 129.9,
129.7, 129.5, 129.3, 128.9. (CH,). MS (ESD:m/z caled for C H,CIN,
[M+H]*: 241.3113, found 241.0512.

(4-Bromo phenyl)-Quinoxaline (3c)

Isolated as a pale yellow solid, Yield 92%; Mp. 128-134 ‘C IR (KBr,
cml): Vo 3443,2925, 1634, 1583, 1536, 1481, 1421, 1307, 1121, 1070,
954, 827, 710 cm-!''H NMR (400MHz, CDCI3) § 9.26 (s, 1H =CH),
8.04-8.13 (m, 4H, Ar), 7.65-7.79 (m, 4H, Ar). *C NMR (100 MHz,
CDCI,) § (ppm): 150.7, 142.8, 142.3, 141.8, 135.7, 132.4, 130.6, 129.9,
129.7, 129.3, 129.1, 125.1. MS (ESI): m/z calcd for C H,BrN, [M+H]
+.287.21, found 287.07.

Results and Discussion

The synthesis of quinoxalines was carried out by reacting
substituted phenacyl bromides/benzil (2a-2m) (0.001 mol) and
o-pheneylenediamine (1a-1b) (0.001 mol) in the presence of Fe(acac),
as a catalyst. Further, the reaction mass was stirred at 60 *C for 50-80
min. afforded quinoxalines (3a-m) with excellent yields and high
purity.

This reaction is outlined in Scheme 1. The structures of all the
synthesized quinoxalines (3a-m) are shown in Figure 2. The model
reaction was carried out in presence of o-pheneylenediamine (la) and
phenacyl bromide (2a) as shown in Scheme 1.

The optimization of the reaction was performed by varying the
reaction parameters, such as reaction time, solvent, and temperature.
It was observed that the quinoxaline formation in ethanol solvent
proceeds with an excellent yield at 60 * C for 50 min (Table 1, entry 3).
no reaction was observed when water was used as the solvent.

The plausible mechanism for the quinaxolines synthesis was
depicted in Scheme 3, which involves the protonation of the carbonyl
group of phenacyl bromide over Fe(acac), catalyst (A). Later on, it
reacts with o-pheneylenediamine that involves dehydration and
dehalogenation simultaneously resulting in the formation of cyclic
product B, which is readily oxidized in air to form desired product C.

Conclusion

In conclusion, we have developed a mild, efficient, and
environmentally benign synthetic protocol for the synthesis of
quinoxalines (3a-m) from substituted phenacyl bromides and
o-pheneylenediamines using Fe(acac), catalyst. The key feature of
the current protocol involves simple reaction conditions, no side
reaction with the formation of the desired product in high yield. The
present method is an alternative to the conventional processes for
the synthesis of quinoxalines. The catalyst could be recovered several
times without loss of catalytic activity, which makes the process cost-
effective. 72-95%.
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