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strategies, since enzymatic activities remained mainly assessed in 
vitro, and characterized in context where spatiotemporal patterns of 
activities were lost : at best, fixed cells enables snapshots of activity 
localization, while lysates & fragmented cells only provide average 
measurement in potentially heterogeneous cells population (Figure 
2). Therefore, toolboxes enabling detection of enzymatic activity were 
welcome in the context of living cells, especially for kinases, which are 
at the node in molecular networks for many cellular decisions (i.e. cell 
cycle progression, differentiation, apoptosis).

From the basic structure of FRET-based sensor towards 
KAR

FRET (Förster Resonance Energy Transfer) is a non radiative 
process involving radiation less energy transfer from a donor 
fluorophore to an adequately selected and positioned acceptor 
fluorophore [6]. In the case of genetically encoded FRET-based 
sensors, the transfer between the donor and the acceptor of the pair 
can solely occur if they are separated by a distance less than ~10nm. 
To build such biosensor, both ends are tagged with appropriately 
chosen fluorophores. Between the fluorophores is located a core 
made up with peptide consensus site, either targeted by a kinase, 
a phosphatase, a caspase or ions (calcium for example). Specificity 
of the FRET-sensor is supported by the specificity of the chosen 
peptide sequence; Condition is that any modification of the peptide 
targeted site will alter the biosensor conformation or will cleave it 
upon either analyte/second messenger presence or protein activity. 
Thus, a change in FRET efficiency results [7], and can be measured 
in different manner [8] while it induces modifications of most light 
properties.

More specifically, in the case of Kinase Activity Reporters (KAR) 
these tools are composed of the two adapted fluorescent proteins 
flanking a substrate for a specific kinase and a Phospho-Amino-Acid 
Binding Domain (PAABD). This PAABD recognizes and binds the 
phosphorylated substrate, allowing a conformational modification 
that brings the fluorophores close to each other and leads to a 
measurable FRET signal. While those sensors are reversible, upon 
phosphorylation, the PAABD will be released and the FRET signal 
will decrease accordingly. A docking site may be added to facilitate 
the interaction between the kinase and its biosensor substrate.

The multiple lives of a KAR
From the discovery of genetically encoded biosensor and its 

adaptation to numerous fields, a major challenge relies now in the 
optimization of these tools. Indeed, the first KAR only allowed 
monitoring massive changes in the analyte’s behavior. First efforts 
have thus been put through increasing their dynamic range and sub-
localizing them in cells compartments. Then, the latest generation 
sensors allow dissecting low or compartmentalized kinase activity. 
This optimization step is now part of new biosensors design with the 
development of dedicated optimization toolkits [9]. Another crucial 
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Biosensor is a generic term describing the various analytical 
devices incorporating a biological sensing element. From their 
emergence in the 80th, they were mainly either sophisticated laboratory 
machines or easy to use portable devices [1]. From the 90th, a plethora 
of new tools, corresponding to the biosensor definition, and aiming at 
detecting enzymatic activities has emerged. They were structured and 
developed based upon different purposes, for example, depending 
upon the will to work in living cells, in lysates from human samples, 
or to benefit from high sensitivity or selectivity. As an illustration of 
the wide range of applications and technologies, one can mention the 
use of (1) in vivo, bioluminescent-based sensors [2,3] or (2) in lysates, 
functionalized gold nanoparticles [4,5], which could provide high-
throughput detection with high sensitivity and selectivity, parameters 
that are mandatory for clinical diagnostics. From them, genetically 
encoded FRET-based reporters were gaining an increased interest 
from the biologist community (Figure 1) especially regarding kinase 
activity measurements, which we focused on in this editorial.

Why such an attractiveness?
These kind of tools overcome the shortcomings of traditional 
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Figure 1: Increasing literature on FRET based biosensors. Comparison of 
“biosensor” and “genetically encoded biosensor” searches during the period 
1980-2013, using Scopus.
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point is to discriminate fluorescence variation due to the sensor 
conformational changes from the fluorescence “biological noise 
and background” [10]. It is thus of crucial importance to make use 
of “dead” reporters, consisting of the same elements as the reporter 
to be tested, except for mutations preventing the conformational 
change due to any changes in the kinase/phosphatase balance. The 
use of pharmacological activators or inhibitors also allows assess the 
sensitivity and reversibility of the biosensor, while these chemical 
tools remain dependent upon their specificity toward kinase(s). 
These different steps of artifacts controls and intrinsic properties 
characterization of different KAR version are intended to bring 
us into gaining more valuable insights regarding kinase activity 
spatiotemporal profiles, even in micro domains [11].

Figure 2: On the different way to look at oscillatory activity.  In this scheme, 
we represent a population of cells with an oscillatory enzymatic activity, 
following the pattern represented in the graph. In this example, we illustrate 
the impact of a slight temporal shift between those oscillations. Traditional 
biochemical methods rely on lysates of cells population. In such example 
the mean activity remains the same and thus, no mean fluctuation of activity 
will be measurable. Microscopy based methods allows to measure activity 
on the whole field of view or cell by cell. If we measure activity on the whole 
field of view, each time point will also give the same mean response but with 
a really high standard deviation. To achieve a realistic view of this oscillatory 
behavior, one thus needs to perform single cell experiment along time i.e. 
microscopy based methods with careful and systematical analysis.
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