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Abstract

In the past five decades, biosensors have consolidated their impact in 
several fields, including clinical applications, due to advantages such as high 
selectivity and sensitivity, potential for miniaturization, portability, low cost and 
rapid response. Recent advances in biomarkers discovery and biotechnology 
are now clarifying the nuances of many biological processes in health and 
disease, highlighting new targets for diagnosis and therapeutics. This is 
especially important in the case of infectious diseases, since the number of 
predicted deaths remains high, with threats of epidemics and pandemics, 
emerging and re-emerging diseases and pathogen resistance to antibiotics. 
Therefore, the availability of robust diagnosis methods is crucial. This review 
presents the current strategies for diagnosis of infectious diseases, notions 
about biomarkers and ligand selection, besides focusing on the promising 
technology of biosensors.
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reported [4].

This review presents the current strategies for diagnosis of some 
infectious diseases, notions about biomarkers and ligand selection, 
besides focusing on the promising technology of biosensors.

Diagnosis strategies for infectious diseases
A diagnostic test is any method for identification of a patient’s 

disease or condition. In the case of infectious diseases, it allows the 
detection of presence or absence of infection. The importance of 
simple, accurate, affordable and rapid diagnosis tests is justified by 
its impact in the clinical management, since early diagnosis affects 
therapy effectiveness and avoids long-term complications and 
pathogen transmission [5].

While the standard diagnosis techniques for infectious 
diseases include well-established methodologies, such as Enzyme-
Linked Immunosorbent Assay (ELISA), nucleic acid-based assays, 
microscopy and microorganism culture [6], the development of 
new strategies for the evaluation of specific biomarkers in clinical 
diagnosis is imperative [7]. The diagnosis tests for infectious diseases 
should present a set of desirable characteristics, such as sensitivity, 
specificity and reproducibility [5].

Historically, the identification of infectious agents was initially 
performed by culture and microscopy. Then, antigen detection and 
Polymerase Chain Reaction (PCR) became widely used. Currently, 
pathogen identification and host response (e.g., antibodies detection) 
are both used to diagnosis pathological states [8].

PCR and DNA microarrays are two widely used nucleic acids 
technologies. PCR employs oligonucleotide primers that are 
complementary to pathogen genetic material to amplify it, if present 
in the sample. The reaction product is detected during or after the 
process. Microarray technology, by the other hand, allows multiple 
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Introduction
Infectious diseases are caused by pathogenic microorganisms, 

including bacteria, viruses, fungi and parasites. Some examples 
among those enumerated by the World Health Organization (WHO) 
include tuberculosis, meningococcal meningitis, malaria, AIDS, 
pneumonia, poliomyelitis, hepatitis, Ebola virus disease, dengue and 
Chikungunya, American trypanosomiasis (Chagas disease), leprosy, 
toxoplasmosis and leishmaniasis.

The urbanization process and the consequent lack of city planning, 
poor management of sanitary conditions and water supplies, great 
inhabitants’ density and interference in previously untouched 
ecosystems conjunctly contribute to the spread of infectious diseases 
[1]. In spite of the existent vaccination programs, the rise in incidence 
of certain diseases shows the impact of intentional under vaccination 
and the urge for public health education programs [2], as well as the 
need of new immunization strategies and alternatives to overcome 
pathogen resistance to antibiotics [3]. 

Although the mortality related to infectious diseases is being 
reduced worldwide, the number of deaths predicted for 2050 is 
13 million and the threats of epidemics and pandemics remain 
considerable [3]. Moreover, emerging and re-emerging diseases 
caused by new, uncategorized or persistent pathogens have been 
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target detection through hybridization with the probes immobilized 
on a surface [9].

Recently, Matrix-Assisted Laser Desorption/Ionization  Time-
Of-Flight Mass Spectrometry (MALDI-TOF MS) is being adopted in 
the comparison of protein fingerprint obtained in a sample with the 
available databases, for the identification of bacteria, fungi [10] and 
viral pathogens [11]. There is also the potential of Next Generation 
Sequencing (NGS) methodologies to revolutionize infectious diseases 
diagnosis, since it does not rely on pre-established sequence targets, 
allowing the identification of emerging or mutating pathogens [12,13]. 
Other strategies are also being developed for clinical diagnosis, 
including microfluidic [14] and nanotechnological [15] devices. 

Biosensors, other promising diagnosis technology that has 
received attention in the last decades and has several associated 
advantages will be discussed later in detail.

Biomarkers and their ligands for infectious diseases 
diagnosis 

A biomarker is “a characteristic that is objectively measured and 
evaluated as an indicator of normal biological processes, pathogenic 
processes, or pharmacologic responses to a therapeutic intervention” 
[16]. Biomarkers are also defined as specific variables, represented by 
biomolecules, such as genes, proteins and metabolites, associated to 
certain populations as distinguishable features [17]. Moreover, this 
term may be associated with the use of genomics, transcriptomics, 
proteomics and metabolomics technologies, the monitoring of 
drug discovery, as well as clinical concepts, such as prediction, 
progression, regression, outcome, diagnosis and therapeutics 
[18]. Some examples of biomarkers for infectious diseases include 
C-Reactive Protein (CRP) and soluble Triggering Receptor Expressed 
on Myeloid cells 1 (sTREM-1). While CRP is applied for sepsis, severe 
infection, rheumatologic conditions and coronary artery disease risk 
stratification; sTREM-1 is a sepsis prognostic marker [8].

The ideal biomarkers should present a whole set of desirable 
characteristics, including accessibility for measurement, sensitivity 
and specificity. Its clinical importance should be externally validated; 
its use should result in cost-effective assays [19] and present 
reproducibility and stability toward sample variations [20]. 

Biomarkers identification may be achieved by several approaches, 
including simple statistical tests, development and analysis of 
classification models or subset-selection optimization [17]. In the 
last decades, several biomarkers for infectious diseases have been 
identified, due to improvements in biomolecules screening techniques 
and bioinformatics analysis. However, their translation into clinical 
use is still limited [19]. 

Depending on the class of biomarker, there are several methods 
for the selection of specific ligands, including phage display and 
Systematic Evolution of Ligands by Exponential Enrichment (SELEX) 
[21].

Nucleic acid ligands
Polymerase Chain Reaction (PCR) and Fluorescence In Situ 

Hybridization (FISH) are two widely used nucleic acid detection 
technologies. While PCR consists in the in vitro specific DNA 
amplification, FISH is the fluorochrome-labeling of oligonucleotides 

for hybridization with the complementary target. Both methods rely 
on the use of known DNA sequences that relates to specific pathogens 
[22,23]. For the development of such diagnostic systems based 
on nucleic acid biomarkers and ligands, the general strategy is to 
compare sequences in order to find species-specific oligonucleotide 
targets that are present in high copy numbers in the cells [23].

When designing DNA oligonucleotide probes for several 
applications, including PCR and DNA hybridization assays, some 
criteria should be followed: assure their complementarity and 
specificity for the target, avoid competing secondary structures 
(dimers and hairpins) and choose adequate melting temperature 
[24,25].

Most efforts in nucleic acid probes design has been related to 
PCR [24], FISH [26] and microarray technologies [27]. Cho et al. [28] 
reported the selection of 23-mer primers for Vibrio cholera detection 
by quantitative polymerase chain reaction. The primers pair had 
the outer membrane lipoprotein lolB gene as target and allowed the 
specific identification of several isolates. Ogura et al. [29] reported 
a method of microarray probe design based on comparison of edit 
distance between sequences to avoid cross hybridization with similar 
probes on the array. Naidoo et al. [30] evaluated Mycobacterium 
Tuberculosispili (MTP) gene and protein sequences as potential 
biomarkers for tuberculosis and found they are specific and highly 
conserved among strains of the Mycobacterium Tuberculosis Complex 
(MTBC), through BLAST and multi-sequence alignment.

These examples show that DNA-based diagnosis and selection 
of appropriate biomarkers ligands have focused in comparing 
sequences. However, this paradigm is changing with the application 
of Next-Generation Sequencing (NGS), which does not rely on 
previous knowledge about the pathogens genetic sequence [12].

Protein and peptide ligands
Several techniques are employed for protein biomarker 

discovery and ligands selection, including mass spectrometry, gel 
electrophoresis and protein microarrays, the later allowing the 
study of entire proteomes [31]. Also, peptides microarrays may be 
employed in the selection of peptide ligands, after computational pre-
selection [32].

Another notable methodology is called phage display and relies 
on the expression and presentation of a great diversity of peptides or 
proteins on bacteriophages surfaces, allowing their selection against 
a target biomolecule [33]. Therefore, this tool can be used to find 
new reagents for immunological assays, including phage-displayed 
peptides that mimetize pathogen antigens, with applications like 
leprosy diagnosis [34] and development of vaccines for visceral 
leishmaniasis [35]. Wu et al. [36] selected three single-chain variable 
Fragments (scFv) for detection of Highly Pathogenic Avian Influenza 
A (HPAI) viruses strains, which could be important to accelerate 
diagnosis and control outbreaks. Another application is the 
presentation of antibodies in the bacteriophage surface for potential 
therapeutic purposes [37], with targets such as the CCR5 HIV co-
receptor [38].

Other ligands
Aptamers are high-affinity ligands selected in vitro. Their targets 

may be specific proteins isoforms or conformations, being analogous 
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to antibodies [39]. Aptamersare selected from libraries through 
Systematic Evolution of Ligands by Exponential enrichment (SELEX) 
against several classes of targets, including carbohydrates, proteins 
and inorganic molecules [40].

Aimaiti et al. [41] selected species-specific aptamers for 
discrimination of Mycobacterium tuberculosis strains through whole 
cell SELEX process. Shiratori et al. [42] developed DNA aptamers 
for proteins of several influenza A virus subtypes and applied them 
in a successful sandwich detection method. Besides diagnostic 
applications, aptamers have also been used as therapeutics agents, 
such as the recently reported S15 aptamer, that binds to the envelope 
protein of all dengue serotypes, neutralizing the infections [43].

These examples show how the integration of physiology, 
biochemistry, genetics, bioinformatics and other research fields, 
may improve biomarker discovery and selection of specific ligands, 
allowing a better understanding of infectious diseases and the 
development of effective diagnostic systems, such as biosensors [44].

Biosensors for diagnosis of infectious diseases 
Biosensors are analytical devices that convert a biochemical 

recognition event into a measurable signal [45], consisting mainly 
of a probe (biological recognition element) and a physicochemical 
detector (transducer) (Figure 1). The objective is to determine 
the presence, activity or concentration of an analyte in a solution 
[46], with a broad range of applications, such as industrial [47], 
environmental [48] and medical [49,50].

Biosensors present several advantages over other analytical tools, 
such as high selectivity and sensitivity, potential for miniaturization 
and portability [51], low cost, detection in real time, use of small 
sample volumes and rapid response [51-53].

Depending on specific criteria, biosensors may be classified 
into distinct groups. Regarding the transducer type, there are the 
calorimetric sensors, related to the conversion of enthalpy [54], the 
piezoelectric, sensitive to mass changes [55], the optical, based on 
light-associated phenomena [56] and the electrochemical, based on 
the generation or consumption of electro active species [57]. 

Another classification system is based on the biological 
component (probe), which can be DNA molecules [58], enzymes [56], 
and antibodies [59], among others (Figure 2). Enzymatic biosensors 
take advantage of the catalytic activity, selectivity and specificity of 
enzymes. The pioneer works of Clark et al. [60], such as the coupling 

of the enzyme glucose oxidase to an electrode that recognized the 
oxygen uptake, yielded one of the most successful classes of biosensors. 
By the other hand, genosensors contain DNA fragments immobilized 
on their surface and can detect mutated genes associated with human 
diseases [61], as well as the genetic identification of pathogens [62-
64]. Immunosensors contain antibodies as biological element, whose 
specific binding sites interact with the antigen to form an antibody-
antigen complex [65]. Other types of biologic elements for biosensors 
include aptamers [66], cells and tissues [67], and microorganisms 
[68].

Although different types of biosensors have been successfully 
developed and applied to the medical field, for the diagnosis 
of pathologies such as cancer [69-72], cardiovascular [73-75], 
autoimmune [76-78] and neurodegenerative diseases [79-82], this 
review will focus on infectious diseases. 

Biosensors for detection of pathogenic virus
Viruses are infectious agents that may be responsible for several 

diseases in humans, including Human Papilloma Virus (HPV) [83] 
(Table 1), dengue virus [43,84-86] and hepatitis virus [62,87-89].

There are 100 genotypes of HPV virus and some of them are 
associated with cancer, especially in the cervix and anus [83]. 
The methods used for the diagnosis have limitations, such as low 
specificity [90]. To overcome this disadvantage, Huang and coworkers 
described a highly sensitive electrochemical biosensor based on 
DNA probes for Human Papillomavirus (HPV), using a glassy 
carbon electrode functionalized with graphene, gold nanorods and 
polymeric film. They used electrochemical impedance spectroscopy 
and 1,10-phenanthroline ruthenium dichloride (Ru(phen)3

2+)as 
redox indicator, amplifying the electrochemical signal. The biosensor 
described proved to be efficient in the viral DNA detection, specifically 
detecting the target in human serum samples with a detection limit 
of 4.03 x 10-14 M [83].

Figure 1: Schematic representation of the general operation principle 
of biosensors. The biological element is immobilized on a surface. In 
the presence of a specific target analyte that binds to the immobilized 
biomolecule, the transducer converts the recognition event into a measurable 
signal, which can be then processed (Adapted from Ronkainen et al [145]).

Figure 2: Schematic representation of distinct groups of biosensors, 
regarding the biological component. The surface-immobilized biomolecules 
glucose oxidase (PDB1GPE [146]), anti-HIV-1 antibody (PDB 1HZH 
[147]) and a DNA dodecamer (PDB 1BNA [148]) represent the enzymatic 
biosensors, immunosensors and genosensors, respectively. Other types of 
biologic elements for biosensors (not represented) include aptamers, cells 
and tissues, and microorganisms. The arrows indicate that, as a general 
principle, the binding of a specific target is converted into a measurable signal.
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Urrego and collaborators described a biosensor for the detection 
of HPV that was able to perform 98 simultaneous tests. It was based 
on a monolayer of 4-aminophenol on a surface of poly(methyl 
methacrylate) with a gold nanolayer and the immobilization of a 
monoclonal antibody (mAb 5051) specific for HPV 16, one of the 
most common genotypes among women. Electrochemical impedance 
spectroscopy was used in the analysis. The biomicrosystem developed 
was portable, used a small volume of sample and simple equipment 
[91]. 

Nasirizadeh et al developed a genosensor using gold electrodes, 
thiolated oligonucleotides specific for HPV and monitored 
the interaction of hematoxylin with dsDNA formed after the 
hybridization process. They used the techniques of cyclic voltammetry 
and differential pulse voltammetry, observing a remarkable 
difference between the voltammetric signals in different samples after 
hybridization. The linear relationship with the concentration of DNA 
target varied from 12.5 to 350.0 nM and the detection limit was 3.8 
nM [49].

Another infectious disease caused by a DNA virus that infects 
hepatocytes of the liver is hepatitis B. It is a global health problem 
with approximately 2 billion people infected, corresponding to about 
a third of the world having positive serology for hepatitis B [92]. 
Hepatitis B virus infection can harm the liver, with high risk of death 
from liver cirrhosis and cancer [89]. During the chronic phase of 
the disease, monitoring is crucial, since it prevents the development 
of progressive diseases, such as cirrhosis and liver failure, as well as 
hepatocellular carcinoma. 

As an alternative to the traditional methods, Castro and coworkers 
developed an electrochemical biosensor for the detection of a specific 
DNA sequence of the hepatitis B virus, using graphite electrodes 
modified with poly (4-aminophenol), differential pulse voltammetry 
as detection technique and ethidium bromide as hybridization label 
(Figure 3). They showed that this device was effective for diagnosis in 
the serum of infected patients and had a detection limit of 2.61 nM 
[62].

Shourian et al. [88] developed a colorimetric immunosensor 
to detect the surface antigen of hepatitis B virus. The strategy used 

was a sandwich immunoassay system that had gold nanoparticles 
functionalized with biotin and luminol. A chemiluminescent signal 
was produced by the gold nanoparticles in the presence of a catalyst 
and hydrogen peroxide as the oxidant. The immunosensor had a 
linear range of 1.7 to1920 pg mL-1 and the detection limit of 0.358 
pg mL-1.

Dengue is a major public health problem in the world, with 2.5 
billion people at risk of contracting the disease. It is transmitted by 
infected female mosquitoes Aedesaegypti and Aedesalbopictus, being 
considered endemic in 98 tropical and subtropical countries. 

Current methods for diagnosis of dengue are based on the 
detection of viral RNA by Reverse Transcription Polymerase Chain 
Reaction (RT-PCR) or immunoassay methods including ELISA, 
where the analyte targets are antibodies raised in response to the 
viruses in the infected patient.  However, early diagnosis of disease 
with these methods can be expensive, time-consuming, and not 
sensitive and produce false positives [85,93].

Trying to overcome these problems, Nascimento and coworkers 
described the development of a biosensor based on gold electrodes 
functionalized with a composite of gold nanoparticles, polyaniline 
and with SH-terminal groups (AuNpPANI-SH). On this surface, they 
immobilized 3 specific oligonucleotides for serotypes 1 (T1), 2 (T2) 

Organism Biomarker / probe Classification Platform Linearity range Detectionlimit Ref.

HPV n.s. / DNA 
oligonucleotide Electrochemical genosensor GCE/G/AuNRs/PT 1 x 10-8 - 1 x 10-13 M 4.03 x 10-14 M [83]

HPV 16 n.s. / 5051 mAb Electrochemical biomicrosystem PMMA/gold nanolayer/4-
ATP SAM n.s. n.s. [91]

HPV n.s. / DNA 
oligonucleotide Electrochemical genosensor GE 12.5 – 350.0 nM 3.8 nM [49]

Hepatitis B 
virus

n.s. / DNA 
oligonucleotide Electrochemical genosensor GrE/poly(4-aminophenol) 1.89 x 10-9 - 1.89 x 

10-6 M 2.61 nM [62]

Hepatitis B 
virus HBsAg / mAb Chemiluminescence immunosensor Polystyreneplate 1.7 - 1920 pg mL-1 0.358 pg mL-1 [88]

Dengue virus n.s. / DNA 
oligonucleotides Electrochemical genosensor GE /AuNpsPANI n.s. n.s. [94]

Dengue virus NS1 protein / anti-NS1 
antibody Electrochemical immunosensor GE/MUA SAM

0.01–2.00  µg mL-1 
(PBS)

0.01–1.00  µg mL-1 
(Neat blood)

3 ng mL−1 (PBS)
30 ng mL−1 (Neat 

blood)
[84]

Dengue virus NS1 protein / anti-NS1 
antibody Electrochemical immunosensor SPE/Thiophene 0.04 – 0.6  µg mL-1 0.015 µg mL-1 [95]

Table 1: Characteristics from several biosensors for detection of pathogenic virus.

n.s.: not specified; 4-ATP: 4-Aminothiophenol; AuNpPANI: Gold Nanoparticles-Polyaniline Hybrid Composite; G: Grapheme; AuNRs: Gold Nanorods; GCE: Glassy 
Carbon Electrode; GE: Gold Electrode; GrE: Graphite Electrode; HBsAg: Hepatitis B Surface Antigen; HPV: Human Papillomavirus; mAb: monoclonal Antibody; MUA: 
11-Mercaptoundecanoic Acid; PMMA: Polymethylmethacrylate; PT: Polythionine; SAM: Self-Assembled Monolayer; SPE: Screen-Printed Electrode.

Figure 3: Example of genossensor for detection of a specific DNA sequence 
before (left) and after (right) the binding of the target (Adapted from Castro 
et al [62]). A specific DNA oligonucleotide was immobilized on a graphite/
poly (4-aminophenol) surface and it was blocked with BSA. Then, the 
complementary DNA target was applied. Ethidium bromide was used to 
discriminate the single-stranded and double-stranded DNA.
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and 3 (T3) and identified the genomic material, using ferricyanide/
ferrocyanide potassium as indicator and cyclic voltammetry and 
electrochemical impedance spectroscopy as detection techniques. 
The system AuNpPANI-ST exhibited a highly selective response 
to the genome of dengue fever in human patients and can be used 
for the construction of a biosensor for serotypes of dengue in low 
concentration [94]. 

Cecchetto and coworkers decided to use the Non-Structural 
protein of dengue (NS1) as target for a biosensor. The authors 
developed an immunosensor using gold electrodes modified 
with a self-assembled monolayer of mercaptoundecanoic acid 
and immobilization of anti-NS1 antibody by covalent bonds. The 
detection technique was electrochemical impedance spectroscopy 
and the calibration curve linearity ranged between 0.01–2.00µg mL-1 
in PBS and 0.01–1.00 µg mL-1 in serum, with a detection limit of 3ng 
mL-1 in PBS and 30ng mL-1 in serum [84].

Silva et al. [95] developed a screen-printed electrode using 
a modified graphite ink with thiophene and a layer of gold 
nanoparticles, immobilized anti-NS1 antibodies and detected the 
amperometric responses of the NS1 protein of the dengue virus by 
cyclic voltammetry in the presence of ferrocyanide/ferricyanide. 

Linearity was obtained from 0.04 to 0.6 µg mL-1 and the detection 
limit was 0.015 µg mL-1.

Biosensors for detection of pathogenic bacteria
Pathogenic bacteria are important targets for detection in several 

fields, such as medicine and food safety. Different approaches have 
been developed for the detection of pathogenic bacteria, since these 
microorganisms contribute to globally important diseases, such as 
tuberculosis, leprosy and meningitis [96-100] (Table 2).

Tuberculosis is caused by the pathogenic bacteria Mycobacterium 
tuberculosis and is currently the leading infectious cause of death, 
undoubtedly representing a global public health priority [101]. 
According to the World Health Organization, in 2013 approximately 
5.7 million cases of tuberculosis were reported worldwide.

In recent years, many biosensors platforms have been developed 
for tuberculosis based on different biological recognition elements 
and various transducers. Liu et al. [102] developed an electrochemical 
genosensor for M. tuberculosis based on the immobilization of a 
specific sequence of the IS6110 gene using a reduced graphene oxide-
gold nanoparticle-modified electrode as a sensing platform and 
gold nanoparticles–polyaniline as a tracer label for amplification. 

Organism Biomarker / probe Classification Platform Linearity range Detectionlimit Re.
Mycobacterium 

tuberculosis IS6110 gene / DNA oligonucleotide Electrochemical genosensor GCE/rGO-AuNPs 1 x 10-15 - 1 x 10-9M n.s. [102]

Mycobacterium 
tuberculosis Genomic DNA / DNA oligonucleotide Electrochemical genosensor GE/ MBA SAM/Fe3O4Nps 6 - 40  ng µL-1 6 ng µL-1 [103]

Mycobacterium 
tuberculosis n.s. / DNA oligonucleotide Electrochemical genosensor GCE/AuNPs 1 x 10-14 - 1 x 10-9 M 8,7 x 10-15 M [93]

Mycobacterium 
tuberculosis IS6110 gene / DNA oligonucleotide Electrochemical genosensor SPCE up to 100 aM 0.5 aM [104]

Mycobacterium 
tuberculosis rpoB gene / DNA oligonucleotide Optical genosensor GE n.s. n.s. [105]

Mycobacterium 
tuberculosis

IS6110, 16S ribosomal RNA, 85B, 
Rv3130c and Rv3133c / DNA 

oligonucleotide
Optical genosensor GE n.s. 115 ng/mL [106]

Mycobacterium 
tuberculosis, 

Mycobacterium 
avium

ITS gene / DNA oligonucleotides Optical genosensor GE/AuNPs 104 CFU mL-1 - 108 
CFU mL-1

4.2 x 104 CFU 
mL-1 and 3.7 x 
104 CFU mL-1, 
respectively

[107]

Mycobacterium 
tuberculosis

Serum antibodies / Antigens (W06,W1
0,W14,W19,W28,W38,W64,W70,W85) Optical immunosensor Array chip/8-MOA SAM n.s. n.s. [108]

Mycobacterium 
tuberculosis

Ag85, ESAT6 and LAM / specific 
antibodies Optical immunosensor Waveguides functionalized 

with a lipid bilayer n.s. 0.5 / 100 / 1 pM,
respectively [109]

Mycobacterium 
tuberculosis PolyclonalIgYantibodies Optical immunosensor Functionalized microtip n.s. 200 CFU mL-1 [110]

Mycobacterium 
tuberculosis n.s. / mAb Electrochemical immunosensor Functionalized microtip n.s. 100 CFU mL-1 [111]

Mycobacterium 
leprae n.s. / PCR product Electrochemical genosensor GrE /poly(4-aminophenol) 0.35-35.0 ng µL-1 n.s. [113]

Mycobacterium 
leprae

IgM and IgG antibodies / ND-O and 
LID-1 antigens

Lateral flow
immunosensor Nitrocellulose membranes n.s. n.s. [114]

Neisseria 
meningitidis

Membrane protein 85 (Omp85) / 
specific antibody

Piezoelectric
immunosensor GE/PVDF 0.3-20 µg mL-1 312 ng/mL [117]

Neisseria 
meningitidis Omp85 gene/ DNA oligonucleotide Electrochemical genosensor SPGE 6-100 ng/6 µL 6 ng/6 µl [118]

Neisseria 
meningitidis CtrA gene / DNA oligonucleotide Electrochemical genosensor Gold coatedglass 

electrode 7–42 ng µL-1 n.s. [119]

Neisseria 
meningitidis CtrA gene / DNA oligonucleotide Electrochemical genosensor Gold coatedglass 

electrode 10–60 ng µL-1 n.s. [120]

Neisseria 
meningitidis CtrA gene/ DNA oligonucleotide Electrochemical genosensor ZNF/Pt/Si 5–240 ng µL-1 about 5 ng µL-1 [121]

Neisseria 
meningitidis rmpM gene / DNA oligonucleotide Electrochemical genossensor SPGE 1-12 ng/6 µL 3 ng/6 μL [122]

Table 2: Characteristics from several biosensors for detection of pathogenic bacteria.

n.s.: not specified; 8-MOA: 8-Mercaptooctanoic Acid; AuNPs: Gold Nanoparticles; Fe3O4Nps: magnetite Nanoparticles; GCE: Glassy Carbon Electrode; GE: Gold 
Electrode; GrE: Graphite Electrode; mAb: monoclonal Antibody; MBA: Mercaptobenzoic Acid; Pt/Si: Platinum/Silicon; PVDF: Polyvinylidenedifluoride; rGO: reduced 
Graphene Oxide; SAM: Self-Assembled Monolayer; SPCE: Screen-Printed Carbon Electrode; SPGE: Screen-Printed Gold Electrode; ZNF: ZnOnanoflowers.
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The linear response of the sensor was 1 x 10-15 to 1 x 10-9M. Costa 
et al. [103] described an electrochemical genosensor based on self-
assembled monolayers of mercaptobenzoic acid and magnetite 
nanoparticles (Fe3O4Nps) on bare gold electrode for immobilization 
of a DNA probe. The detection limit was 6ng µL-1.

Zhang et al. [93] proposed a novel electrochemical biosensing 
platform using CdSe quantum dots as a label combined with MspI 
endonuclease and gold nanoparticles to improve the selectivity and 
amplify the signal. The sensor linear range of response was 1 x 10-14 to 
1 x 10-9 M and it discriminated mismatched DNA for M. tuberculosis 
with high selectivity. For the detection of very small quantities of 
pathogen genomic DNA, an electrochemical method was developed 
and this platform was applied to the detection of M. tuberculosis in 
sputum, pleural fluid and urine samples. This methodology is based 
on the entrapment of amplified single-stranded DNA sequences on 
magnetic beads, followed by the post-amplification hybridization 
assay to provide a higher level of specificity [104].

Other detection systems have been reported, such as Surface 
Plasmon Resonance (SPR), an optical detection technique that 
has been widely used for the development of genosensors for M. 
tuberculosis [105-107], and immunoassays [108-111].

Another disease caused by bacteria of the genus Mycobacterium is 
leprosy, a chronic disease caused by Mycobacterium leprae. According 
to WHO, in 2013 about 215,000 cases of leprosy were reported in the 
world, and the early diagnosis is important to interrupt transmission 
and prevent severe damage to patients [112].

Afonso et al. [113] developed an electrochemical genosensor 
based on the immobilization of a specific single-stranded DNA 
oligonucleotide on a graphite electrode modified with poly 
(4-aminophenol). The system target was M. leprae and the linear 
range of detection was from 0.35 to 35.0 ng µL-1. In addition, a fast 
and quantitative test for leprosy was developed by immobilizing two 
specific antigens on nitrocellulose membranes to detect IgMandIgG 
antibodies [114].

Meningitis can be caused by various pathogens, such as 
bacteria, fungi, viruses and parasites. Among the bacteria species 
that can cause meningitis, the most common are Streptococcus 
pneumoniae, Neisseria meningitidis, Haemophilusinfluenzae, Listeria 
monocytogenes and Streptococcus [115,116]. Particularly, Neisseria 
meningitidis has the potential to cause large epidemics. 

Among the studied targets for detection, there is Omp85, a 
virulence gene that codes for a conserved outer membrane protein of 
N. meningitidis. Reddy et al. [117] described the development of an 
immunosensor using the quartz crystal microbalance as transducer 
and antibodies against the cell surface outer membrane protein 85 
of N. meningitides as biologicalrecognition element (Figure 4). In 
addition, an electrochemical genosensor was developed using specific 
oligonucleotides for this virulent gene immobilized on screen-printed 
gold electrodes and the sensor sensitivity was 2.6 (µA/cm2)/ng [118]. 

Other electrochemical genosensors have been described using 
specific oligonucleotides for other virulent factors. A genosensor was 
developed through the immobilization of thiol-labeled DNA probe 
on a gold electrode surface and its hybridization with complementary 
sequence of the ctrA gene. The sensitivity was 115.8 µA/ng with 0.917 
regression coefficient [119], 0.0115 µA/ng with 0.999 regression 
coefficient [120] and 168,64 µA/ng with 0.98 as regression coefficient 
[121]. Dash et al. [122] used specific oligonucleotides complementary 
to the rmpM (reduction-modifiable protein M) virulent gene as a 
biological recognition element. The sensitivity of the genosensor was 
9.5087 µA/ng.

Biosensors for detection of pathogenic protozoan
Protozoa are one of the main classes of parasites that cause 

diseases in humans. A wide variety of approaches have been applied to 
the development of biosensors for the diagnosis of protozoan-caused 
diseases such as malaria, leishmaniasis, American trypanosomiasis 
(Chagas disease) and toxoplasmosis.

Malaria is transmitted to humans by the bite of more than thirty 
species of female anopheline mosquitoes. The etiologic agent is a 
protozoan of genus Plasmodium. Five species, P. falciparum, P. vivax, 
P. malariae, P. ovale, and P. knowlesi, are known to affect humans 
[44]. According to the WHO, in 2013 about 48 million cases of 
malaria were reported worldwide, with 584,000 deaths (Table 3). 

Various biomarkers have been used to malaria diagnosis [44]. 
Histidine-rich protein-II is produced and secreted by the parasite 
during its growth and development and it has been widely used for the 
development of electrochemical [123-125] and optical immunosensors 
[126]. Biosensors based on the immobilization of aptamers with high 
affinity for lactate dehydrogenase, another biomarker for malaria, 
has been reported in the literature using electrochemical [127] and 
colorimetric [128,129] transducers. Reddy et al. [117] describes the 
development of Plasmodium lactate dehydrogenase-specific ssDNA 
aptamers by SELEX using magnetic beads. The selected aptamers 
were characterized and used for the construction of an aptamer-
based electrochemical sensor able to discriminate malaria positive 
samples from non-infected sample (Figure 5). In addition, Ittarat et 
al. [130] described a genosensor based on quartz crystal microbalance 
to differentially diagnose malaria infection by either P. falciparum or 
P. vivax.

Figure 4: Example of immunosensor for detection of meningococcal antigen 
before (left) and after (right) the binding of the target (Adapted from Reddy 
et al. [117]). A gold electrode was modified with polyvinylidenedifluoride thin 
film deposition. Antibodies were directionally orientated by interaction with 
protein A and the surface was blocked with casein. Next, gold nanoparticles 
conjugated with the target antigen and BSA was applied to the surface, in 
order to allow the antigen-antibody interaction.



Austin J Biosens & Bioelectron 1(3): id1015 (2015)  - Page - 07

Santos AR Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

Leishmaniasis is a tropical disease caused by an intracellular 
parasite of the genus Leishmania. The vector of transmission is the 
sand fly, which may deposit one of the 20 disease-causing protozoan 
species during blood ingestion. Clinical presentation depends on 
the complex interplay between the host cell-mediated immune 
response, and the specific protozoa and vector species. There are 
four generally accepted classifications of clinical disease: cutaneous, 
diffuse cutaneous, mucocutaneous and visceral leishmaniasis [131]. 
According to the WHO, in 2013 about 215 thousand cases of 
leishmaniasis were reported worldwide.

Among the immunosensors reported, Sousa et al. [132] developed 
a new fluorescence-based immunosensor that comprised magnetic 
polymer microspheres coated with recombinant antigens, to improve 
the detection of anti-Leishmaniainfantum specific antibodies in the 

serum of infected dogs. Souto et al. [133] described the development 
of an immunosensor for anti-L. infantum antibodies based on 
detection by SPR technique.

Other kinds of transducers have been used, such as in the 
piezoelectric immunosensor developed for the detection of L. infantum 
antigens in tissues of infected hosts [134]. In this case, antibodies were 
immobilized on a gold surface, covered with a thin film of cysteamine 
and glutaraldehyde, blocked with glycine and placed into contact 
with extracts of hamster spleens infected with L. infantum. The assay 
was able to detect 1.8 x 10-4amastigotes/g of infected tissue. Moreover, 
Mohan et al. [135] described an electrochemical genosensor based on 
the immobilization of a DNA sequence that targeted 18S rRNA gene 
sequences from Leishmaniadonovani.

Chagas disease, also known as American trypanosomiasis, 

Organism Biomarker / probe Classification Platform Linearity 
range Detectionlimit Ref.

Plasmodium falciparum Anti-PfHRP-2 
antibodies/ PfHRP-2 Electrochemical immunosensor SPE/Al2O3 sol–gel/ 

AuNPs n.s. 1 : 102400 dilution of rabbit 
anti-PfHRP-2

[123]

Plasmodium falciparum PfHRP-2 / specific 
antibody Electrochemical immunosensor AuNPs/MWCNT/

SPE n.s. 8 ng mL-1 [125]

Plasmodium falciparum PfHRP-2 / specific 
antibody Piezoelectric immunosensor GE/DDT/TA 15–60 ng/ml 12 ng/ml [124]

Plasmodium falciparum
Anti-PfHRP-2 
antibodies / 

PfHRP-2
Optical immunosensor GE /4-MBA n.s. 5.6 pgand 0.4 ng [126]

Plasmodium falciparuma 
nd Plasmodium vivax pLDH / aptamer Electrochemical

aptasensor GE 1- 1000 pM 1 pM [127]

Plasmodium vivax pLDH / aptamer Colorimetric
aptasensor

AuNPs/PDDA or 
PAH

0-500 
parasites/µl

80
parasites/µl (PDDA)

74 parasites/µl (PAH)

[128]

Plasmodium falciparum 
and Plasmodium vivax pLDH / aptamer Colorimetric

aptasensor AuNPs 1 pM - 1 nM
1.25 pM (Plasmodium vivax) 
and 2.94 pM (Plasmodium 

falciparum)

[129]

Plasmodium falciparum 
and Plasmodium vivax

n.s. / DNA 
oligonucleotide Piezoelectric genosensor SEQC/MPA n.s. n.s. [130]

Leishmania infantum

Leishmania 
infantum

antibodies / rK39 + 
LicTXNPxantigens

Fluorescent Immunosensor Magnetic 
microspheres n.s. n.s. [132]

Leishmania infantum
L.infantum

antibodies / L. 
infantum antigens

Optical immunosensor GE/MUA SAM 1:50-1:6400 
dilutions 1:6400 dilution [133]

Leishmania infantum Parasite antigens / 
mABs Piezoelectric immunosensor GE/CA n.s. 1.8 x 10-4 amastigotes/g of 

infected tissue
[134]

Leishmania donovani 18S rRNA gene / 
DNA oligonucleotide Electrochemical genosensor ITO/NiO 2pg/ml - 

2μg/ml 0.02 ±0.002 ng/μl [135]

Trypanosoma cruzi
T. cruzi antibodies 

/ CRA and FRA 
antigens

Electrochemical immunosensor GE and PE n.s. n.s. [137]

Trypanosoma cruzi T. cruzi antibodies / 
T. cruziantigen Electrochemical immunosensor SPGE/CA n.s. n.s. [138]

Trypanosoma cruzi IgG antibodies / 
specific antigens Electrochemical immunosensor SPCE/MPA-AuNPs 11 - 205 ng 

mL-1 3.065 ng mL-1 [139]

Toxoplasma gondii IgG antibodies / 
specific antigen Piezoelectric immunosensor PQC/ n-butyl 

amine PPF
∼1:5000–

1:75 dilution ∼1:5500 dilution [141]

Toxoplasma gondii IgG antibodies / 
specific antigen Electrochemical immunosensor GE/MPA

1:200- 
1:8000

dilutions
1:9600 dilution [142]

Toxoplasma gondii IgG antibodies / 
aptamer

Fluorescence
aptasensor Microplate 0.5−500 IU 0.1 IU [143]

Toxoplasma gondii n.s. / DNA 
oligonucleotides

Fluorescence
aptasensor Fe3O4/CdTe n.s. 8.339 nM [144]

Table 3: Characteristics from several biosensors for detection of pathogenic bacteria.

n.s.: not specified; 4-MBA: 4-Mercaptobenzoic Acid; Al2O3sol–gel: Alumina sol–gel; AuNPs: gold Nanoparticles; CA: Cysteamine; CRA: Cytoplasmic Repetitive 
Antigen; DDT: 1-Dodecanethiol; Fe3O4/CdTe: magnetic fluorescent nanoparticles; FRA: Flagellar Repetitive Antigen; GE: Gold Electrode; ITO: Indium Tin Oxide; 
MPA: 3-Mercaptopropionic Acid; MUA: 11-Mercaptoundecanoic; MWCNT: Multiwall Carbon Nanotubes; NiO: Sol-gel synthesized nickel Oxide; PAH: Poly (Allylamine 
Hydrochloride); PDDA: Poly (Diallyldimethylammonium chloride); PE: Platinum Electrode; PfHRP-2: Plasmodium falciparum Histidine Rich Protein-2; pLDH: 
Plasmodium Lactate Dehydrogenase; PPF: Plasma-Polymerized Film; PQC: Piezoelectric Quartz Crystals; SAM: Self-Assembled Monolayer; SEQC: Silver Electrode 
of Quartz Cristal; SPCE: Screen-Printed Carbon Electrode; SPE: Screen Printed Electrode; SPGE: Screen-Printed Gold Electrode; TA: Thioctic Acid.
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is a neglected tropical disease caused by the protozoan parasite 
Trypanosomacruzi. It is found mainly in endemic areas of 21 Latin 
American countries, where it is mostly vector-borne transmitted 
to humans by contact with feces of haematophageous bugs of the 
Triatominae subfamily, known as ‘kissing bugs’, among other names, 
depending on the geographical area [136]. 

A polypeptide chain formed by recombinant antigens, 
cytoplasmic repetitive antigen and flagellar repetitive antigen of T. 
cruzi was adsorbed on gold and platinum electrodes and antigen-
antibody interaction was investigated by electrochemical impedance 
spectroscopy [137]. T. cruzi proteins from epimastigote membranes 
were used for the construction of an amperometric immunosensor 
for serological diagnosis of Chagas disease. Antibodies present in the 
serum of patients were captured by the immobilized antigens and 
the affinity interaction was monitored by chronoamperometry using 
peroxidase-labeled IgG conjugate [138].

Ferreira et al. [138] described an amperometric bioelectrode 
for detection of antibodies occurring in sera of patients suffering 
from American trypanosomiasis. The strategy consisted of the 
immobilization of parasites proteins on goldelectrodes modified 
with thiol and the detection limit was 12.4 ng mL-1 of IgG. Pereira 
et al. [139] reported the development of an integrated microfluidic 
system coupled to a screen-printed carbon electrode applied to the 
quantitative determination of IgG specific antibodies present in 
serum samples. The electrode was modified by electrode position 
of gold nanoparticles and functionalized with T. cruzi proteins 
from epimastigote membranes. The calculated detection limit for 
electrochemical detection was 3.065 ng mL-1.

Toxoplasmosis is caused by the parasite Toxoplasma gondii, an 
obligate intracellular protozoan, capable of infecting humans. Most 
infections are asymptomatic or take a mild form, characterized by 
fever, malaise and lymphadenopathy. However, in cases of immune 
deficiency or when the parasite is congenitally acquired, it may 
cause serious illness and even death [140]. The diagnosis and genetic 
characterization of T. gondii infection is crucial for monitoring, 
prevention and control of toxoplasmosis. Traditional approaches 
for the diagnosis of toxoplasmosis include molecular and imaging 

techniques [102].

Most biosensors for toxoplasmosis described in the literature 
are based on immunoassays for the detection of anti-T. gondii 
antibodies. An agglutination-based piezoelectric immunoassay was 
developed for directly detecting anti-T. gondii immunoglobulin’s in 
infected rabbit serum and blood. The proposed technique is based 
on the specific agglutination of antigen-coated gold nanoparticles 
(10 nm diameter), in the presence of the corresponding antibody, 
which causes a frequency change monitored by a piezoelectric device. 
The developed system is sensitive to dilution ratios of anti-T. gondii 
antibody as low as 1:5500 [141].

Ding et al. [142] developed an electrochemical biosensor based on 
an enzyme-catalyzed amplification. T. gondii antigen was immobilized 
on the surface of a gold electrode in order to bind anti-toxoplasma 
IgG, and this was followed by the addition of anti-toxoplasma IgG 
horseradish peroxidase conjugate. The transduction methods were 
quartz crystal microbalance, electrochemical impedance spectroscopy 
and cyclic voltammetry, with a detection limit of 1:9600 in dilution 
ratio.

Luo et al. [143] used two aptamers with high affinities to 
antitoxoplasma IgG as detection probes while developing a quantum 
dots-labeled dual aptasensor. In the presence of anti-toxoplasma 
IgG, an aptamer-protein-aptamer sandwich complex is formed and 
captured on a multi well microplate, whose fluorescence can be 
read out using quantum dots as label. The aptasensor has linearity 
within the range of 0.5-500 IU with the lowest detection of 0.1 IU. 
Also based on fluorimetric detection, He et al. [144] described the 
use of magnetic fluorescent nanoparticles in the development of a 
genosensor for the detection of T. gondii DNA oligonucleotides, with 
limit of detection of 8.339 nM.

Conclusion
Since the first ideas five decades ago, biosensors have shown 

their potential to revolutionize the diagnosis of a variety of health 
conditions. Today, their impact in clinical management is well 
established, since rapidity, specificity and sensibility are crucial 
characteristics for early diagnosis and therapy initiation. The 
development of new technologies, such as nanotechnology and 
microfluidics, together with biomarker discovery should improve 
their effectiveness. In the case of infectious diseases, which have the 
potential of transmission and outbreaks occurrence, with possible 
sequels development and lethality, the availability of robust diagnosis 
methods is crucial.

Biosensors are also important in the democratization of diagnosis. 
Many methods currently available are inaccessible for a significant 
part of the world population, since they are expensive, centralized and 
require specialized technicians for operation. Therefore, the potential 
of cost reduction, portability and simplicity is largely appreciable, 
especially in the case of neglected diseases.

What lies ahead is also promising. Advances in fields such as 
genetics and epigenetics, chemistry and biochemistry, physiology 
and bioinformatics have the potential of clarifying the nuances of 
biological processes in the health and disease. New targets of study 
are emerging and other are being better understood, especially in 
diagnosis and therapeutics, or even both (i.e., theranostics). Therefore, 

Figure 5: Example of aptasensor for the diagnosis of malaria before (left) 
and after (right) the binding of the target (Adapted from Lee et al. [127]). 
The scheme illustrates a specific thiol-modified aptamer immobilized on a 
gold electrode, together with spacer molecules. Next, the protein target was 
applied for interaction with the aptamer probe.
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the coupling of these findings with promising technologies such as 
biosensors may change the current landscape of clinical diagnosis.
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