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siRNA based therapeutics. Though the RNAi is naturally occurring 
process in cells which provide all necessary components including 
the formation of RNA-Induced Silencing Complex (RISC) induces 
dicer endonuclease mediated cleavage of mRNA as showed in Figure 
1a [13]. However the delivery of therapeutic siRNA is essential for 
induction of RNAi. Thus difficulties in the systemic delivery of siRNA 
to targeted tissues due to poor intracellular uptake, immunogenic 
response and limited blood stability hinders the siRNA therapeutics 
[14]. Additionally, delivery of siRNA to the target tumor site has been 
another hurdle in gene therapy. Furthermore, the bare siRNAs do not 
able to easily cross the cell membrane due to their negative charge 
and size [15]. 

Therefore in order to augment the intrinsic therapeutic 
potency and delivery of siRNA, various nanocarrier-based targeted 
gene therapies have explored (Figure 1b) [16]. Among various 
nanocarriers, viral vectors have been explored primarily [17]. Despite 
providing high transfection efficiency, their applications were 
limited by immunotoxicity, chances of occurrence of mutagenicity 
and tumorigenesis. Considering the safety concern the non-viral 
vectors have been investigated such as various natural and synthetic 
polymers, cationic lipids and metal nanoparticles etc., [18]. Among 
which the cationic liposomes have exhibit hopeful results as delivery 
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silencing strategies based on RNA interference (RNAi)-mediated 
knock down of oncogene targeted cancer therapy [1]. RNAi refers to 
a method, where specific protein suppression could be achieved by 
delivery of double stranded short (20-25bp) interfering RNA (siRNA) 
[2]. However, the successful RNAi mediated gene therapy depends 
upon effective intracellular delivery of siRNA either as preformed 
siRNA or in conjugation with expressing plasmid vector and the 
efficient knock-down of oncogene transcripts [3]. 

Among various oncogenic targets, AKT⁄ Protein Kinase B (PKB) 
remains the central player in cell signaling pathways, altering cell 
survival and death [4]. Its activation leads to apoptotic resistance in 
cells, support cell survival, growth, and migration, energy metabolism 
and angiogenesis. It is evident from various studies that AKT 
perturbations plays an important part in tumorigenesis, [5] based 
on constitutive and increased expression of various AKT isoforms in 
diverse cancers, the inactivation of antagonists such as Phosphatase 
Tensin Homolog (PTEN), or mRNA over expression [6,7]. Its anti-
apoptotic action accounts for cell transforming ability and drug 
resistance in cancer cells against various chemotherapeutic agents [8]. 
Hence, AKT appears to play a pivotal role in the growth and tumor 
cells survival. Activation of Phosphatidylinositol 3-Kinase (PI3K)-/
AKT due to genetic alteration leads to chemotherapeutic insensitivity 
in diverse cancer preclinical and clinical trials [7,9]. Its dysregulation 
showed profound effect on the sensitivity of doxorubicin and 
4-hydroxyl tamoxifen toward breast cancer chemotherapeutics [10]. 
Furthermore, characteristic AKT activation has been observed in 
various human tumor malignancies thus resulting in unfortunate 
predictive results [11,12]. Three AKT isoforms: AKT1⁄PKBα, 
AKT2⁄PKBβ, and AKT3⁄PKBc namely found in mammalian tissues, 
among which AKT1 and AKT2 has been found to be ubiquitously 
expressed in all type tissues observed and upregulated in various 
transformed tissues [5]. All these isoforms share amino acid homology 
closely and gets activated by PI3K-dependent pathway [2].

Consequently, AKT regulation possesses tremendous therapeutic 
attention and can be accomplished by successful delivering of AKT-
siRNA. But for successful AKT-siRNA delivery, capable and safe 
nanocarrier is utmost necessity, and has appeared as major hurdle in 

Editorial

Nanocarriers for AKT siRNA Based Gene Therapy
Dubey P1 and Gopinath P1,2*
1Centre for Nanotechnology, Indian Institute of 
Technology Roorkee, India
2Department of Biotechnology, Indian Institute of 
Technology Roorkee, India

*Corresponding author: Gopinath P, Department of 
Biotechnology, Nanobiotechnology Laboratory, Indian 
Institute of Technology, Roorkee, Uttarakhand-247667, 
India

Received: April 27, 2016; Accepted: May 03, 2016; 
Published: May 05, 2016

Figure 1: a) Schematic of oncogene silencing mechanism in cancer cell 
assisted by AKT-siRNA, b) Various nanocarriers as vehicle for AKT-siRNA 
delivery.
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vector by protecting the siRNA against nucleases and evading the 
endosomal degradation [19,20]. Nevertheless, the use of liposomes 
was limited based on their reduced stability in physiological medium, 
short circulation life, and lack of controlled release system. Recently, 
a new class of liposomes known as niosomes is evolved as an alternate 
with enhanced rigidity, stability, biocompatibility, and high dispersive 
nature that avoid the blockage of vessels [21]. 

Among cationic natural polymers, the chitosan based nanocarrier 
has been successfully applied for in vitro and in vivo gene delivery 
[22-25]. It is a mucoadhesive, biodegradable and biocompatible, 
cationic polysaccharide, however, its low transfection efficiency 
based on its poor buffering ability for intracellular endosomal escape 
remained the challenge. Studies have been done to further improve its 
transfection efficiency by grafting it with synthetic cationic polymer, 
the Polyethylenimine (PEI) (CHI-g-PEI) [26] which showed better 
cell viability in vitro, and in vivo with enhanced transfection efficiency 
on aerosol delivery [2,26-28].

Therefore among synthetic polycationic polymers used for siRNA 
delivery, PEI take an important place based on its comparatively high 
gene transfection efficacy [29,30]. It is a water-soluble polymer with 
protonable amino groups, provides high cationic charge density at 
physiological pH. Various modifications of PEI with several ligands 
or coupling agents as cell-specific moieties are promising approaches 
to enhance the specificity, biocompatibility, and transfection. In 
physiological conditions, PEI remains protonated which allows it 
to form electrostatic complexes with nucleic acid molecules called 
as ‘polyplexes’ or nanoplexes which offers the shield for siRNA 
from nucleolytic enzyme degradation, promote efficient uptake via 
endocytosis and intracellular release through the phenomena called 
as ’proton sponge effect’ [27]. These polyplexes enter the cells via 
caveolae- or clathrin mediated pathways, where with the former 
route leads to efficient transfection. A study showed biodegradable 
nano-polymeric systems based on poly (ester amine) carrier based on 
Polycaprolactone (PCL) and PEI which showed impressive in vitro 
and in vivo gene delivery [30].

Recently, Graphene Oxide (GO) has been came in limelight 
based on its exceptional properties which leads to extensive 
investigation of GO for various applications including the drug 
delivery, biosensors, bioimaging, and gene therapy. The first study 
of GO as gene delivery vehicle was done by Liu and co-workers in 
combination with PEI, which was then tagged with EGFP plasmid 
DNA (pDNA) for intercellular gene transfection in HeLa cells. In 
another study Zhang and co-workers prepared PEI-grafted GO (GO–
PEI) through covalent modification as an excellent nanocarrier for 
delivery of siRNA and drugs in vitro [31]. Recently the GO–PEI–
PEG functionalized nanocarrier has been explored with an excellent 
physiological stability and solubility with low toxicity for delivering 
siRNA, CpG, STAT3, VEGF etc into cells [32-34]. 

Nanofibers have been widely explored for numerous applications, 
including antibacterial, cancer cell and tissue engineering field 
[35,36]. Recently the electrospun nanofibers were explored for their 
gene therapy potential [37]. As a template for nucleic acid delivery, 
nanofibers offers various advantageous features including the ease 
of production, their ECM-mimic behavior, feasibility of providing 
various properties by modifications, and their large surface area. It 

exhibits a great ability to control the release kinetics of gene vectors 
and enhance gene delivery efficiency [38,39]. 

Recently the concept of DNA metallization has been expanded 
for gene delivery. A study reported facile synthesis of pDNA-
templated silver nanoparticles (Ag NP), which could serve as 
a platform for effective gene delivery [40,41]. Compared to 
conventional nanocarriers, the metalized-pDNA offers numerous 
advantages, including providing appropriate size and surface charge, 
facile synthesis and minimal cytotoxicity, thus biocompatible 
nanomaterials for efficient gene delivery.

Though many studies are done for exploration of gene delivery 
nanocarriers, however the clinical translation of these nanocarriers 
is the major hurdle due to the non-specificity, cytotoxicity, 
biocompatibility and stability in physiological milieu emerged as 
critical bottleneck for siRNA therapeutics. Hence for successful 
siRNA delivery, safe and efficient gene delivery system is imperative. 
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