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Abstract

Huanglongbing (HLB) is the most destructive disease of citrus worldwide. 
The disease is caused by Candidatus Liberibacter spp., which is vectored by 
the psyllids Diaphorinacitri Kuwayama and Triozaerytreae. Secretory proteins 
are important in bacterial pathogenesis and structure components. Some of 
them are expressed at a high level. To obtain the highly-expressed Secretory 
Protein Genes (SPGs) for antiserum preparation, ten candidate SPGs were 
chosen from Candidatus LiberibacterAasiaticus by bioinformatic analysis and 
were further tested by PCR, qPCR, and RT-qPCR methods, respectively. 
The result showed that two SPGs, 408 and pap (both are Flp pilus assembly 
protein genes), have relative high amounts of DNA and RNA transcripts of 
early HLB-infected green orange leaves. The 408 and pap genes were further 
constructed into the plant expression vector pCAMBIA1300 (GV1300: GFP) and 
expressed in tobacco leaf epidermal cells for subcellular localization analysis. 
The transient expression results indicated that the 408 protein is located in the 
nuclei and cytoplasms of tobacco leaf cells. However, the pap protein is located 
in the radially-arranged micro-fibrils of tobacco guard cells, which may help the 
pathogen invade into plant cells. This research is an important foundation for the 
preparation of the antiserum against Candidatus Liberibacter Asiaticus and the 
early detection of HLB disease. 

Keywords: Candidatus liberibacter asiaticus; Secretory protein; DNA 
amount; RNA transcription; Subcellular localization

is a key factor for healthy development of the citrus industry. In 
recent years, with the fast development of the green orange industry 
in Hainan Province of China, the citrus Huanglongbing also spread 
rapidly [13]. At present, a rapid and large-scale field detection 
method for the pathogen mainly depends on protein technology, e.g., 
Enzyme-Linked Immuno Sorbent Assay (ELISA) [14-16]. However, 
a commercial large-scale detection method based on the protein level 
for HLB disease is yet to be developed. 

There are six types of protein secretion system (type’s I-VI) in 
Gram-negative bacteria [17,18]. Each type of protein secretion system 
consists of a series of proteins with specific structures and functions. 
Through these protein secretion systems, Gram-negative bacteria can 
release various toxic factors and effector factors to the extracellular 
environment or into the host cell to cause infection, which eventually 
leads to various diseases [18,19]. Therefore, it is an ideal gene for the 
preparation of the antiserum against the Candidatus Liberibacter 
Asiaticus because the content of secreted protein is often 100 to 
1000 times higher than the number of its pathogen. Studies have 
shown that the pathogen of CandidatusLiberibacterasiaticus has an 
incomplete type III and type IV protein secretion system but has a 
complete type I protein secretion system [20,21].

In this study, 10 candidate Secretory Protein Genes (SPGs) from 
Candidatus Liberibacter Asiaticus were chosen by bioinformatics 
analysis and two SPGs of 408 and pap with relatively high DNA 
and RNA contents were identified by PCR, qPCR, and RT-qPCR 
methods. Furthermore, the 408 protein was located in the nuclei and 
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Introduction
Citrus Huanglongbing (HLB), or greening disease, is a devastating 

disease that seriously threatens the development of the citrus industry 
globally [1-3]. Currently, the disease has been found in about 50 
countries in the Asia, Africa, Oceania, South America, and North 
America regions. In China, 11 of the 19 major citrus-producing areas 
suffer from the HLB disease [1,4-6]. Citrus Huanglongbing is caused 
by the pathogen of Candidatus Liberibacter Asiaticus, africanus, and 
americanus, a Gram-negative bacterium, which belongs to the genus 
Candidatus Liberibacter [7,8]. There are no effective therapeutic agents 
or ideal resistant varieties for now. Integrated control management 
of HLB occurs mainly through controlling psyllids in field areas, 
removing HLB-infected trees, and planting healthy nursery trees. Of 
these three steps, the effective removal of infected trees depends on an 
accurate diagnosis of HLB at the early infection stage [8-10]. 

The content of Candidatus Liberibacter Asiaticus is low in infected 
trees and unevenly distributed in different parts of diseased plants 
[11,12]. Therefore, the establishment of an efficient and sensitive 
detection method for diagnosis of HLB at the early infection stage 
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cytoplasms of tobacco cells, while the pap protein was localized in 
the microfibers of tobacco guard cells by Agrobacterium-mediated 
transformation in tobacco leaf cells for transient expression. The 
study is an important foundation for the preparation of the antiserum 
against Candidatus Liberibacter Asiaticus to be used for the early 
detection and prevention of citrus HLB.

Materials and Methods
Materials 

In 2016, the QH sample was mixed from five early HLB-infected 
green orange leaves with asymptomatic disease in Qionghai County, 
Hainan Province, and the QZ sample was mixed from another five 
early HLB-infected green orange leaves with asymptomatic disease 
in Qiongzhong County, Hainan Province. Wild-type Nicotiana 
benthamiana (N. benthamiana) (Ferox genus) was kept in the 
Laboratory of Molecular Virology, Institute of Tropical Bioscience 
and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural 
Sciences (CATAS). The GV1300 plasmid (pCAMBIA1300: GFP) was 
provided by Professor Ming Peng of ITBB, CATAS. 

Primers design, DNA, and cDNA preparation 
In order to identity one or two high-expression SPGs, ten SPGs 

were chosen from the different protein secretory systems according to 
the complete genome sequence of Candidatus Liberibacter Asiaticus 
[22] (Table 1). Based on the nucleotide sequences of these SPGs, 
ten primer pairs (Table 2) were designed for PCR assay by Primer 
Premier 5 software (Premier Bio soft International, Palo Alto, CA, 
USA). Furthermore, six primer-pairs of the 408, 24A, fATP, pap, 
msp, and 377 genes were also designed for qPCR or RT-qPCR using 
the online website (https://www.idtdna.com/Scitools/Applications/
RealTimePCR/) (Table 3). 18S rRNA of citrus was used as an internal 
reference gene [23] (Table 3). All primers were synthesized by the 
Beijing Genomics Institute (BGI). 

Total DNA extraction of the QH and QZ samples was performed 
according to the manufacturer’s instructions with a Plant Genomic 
DNA Kit (TIANGEN BIOTECH, Beijing, China) and total RNA 
extraction was performed according to the Trizol Universal Regent 
(TIANGEN BIOTECH, Beijing, China). First-strand cDNA was 
synthesized from 2.0 μL of total RNA using 0.5 μL of random 
hexamer primer (10 μM) and the Fast Quant RT Kit (with gDNase) 

(TIANGEN BIOTECH, Beijing, China). 

Screening of candidate SPGs and establishment of real-
time quantitative PCR (qPCR) 

PCR assay was firstly conducted to identify the possible candidate 
SPGs from the QH and QZ samples. PCR reactions were performed 
by using 2× HSTM Mix kit (Dongsheng BIOTECH, Guangzhou, 
China): 12.5 all of 2× HSTM Mix, 0.5 all of the forward primer (10 μM), 
0.5 μL of reverse primer (10 μM), and 1 μL of DNA template, with 
ddH2O added to 25 μL. The PCR program involved pre-denaturing 
at 94°C for 3 min, followed by 35 cycles of denaturing at 94°C for 30 s, 
annealing at 55°C for 30 s, extending at 72°C for 90s, and finally, the 
reaction was terminated by post-extending at 72°C for 10 min. 

In order to measure the efficiency and correlation coefficients of 
six SPG primer pairs in qPCR, the initial amplified DNA template was 
further diluted to 1:10–1, 1:10–2, 1:10–3, 1:10–4, and 1:10–5 by ddH2O, 
and these samples were used to establish the standard curves for each 
pair primer in the Strata gene Mx3005 machine. The results showed 
that six qPCR systems with the specific primer pairs amplified SPGs 
highly efficiently (efficiencies of 86.8% to 92.2%) with correlation 
coefficients between 0.981 and 0.999. 

In order to measure the relative DNA amounts and their RNA 
expression levels of six SPGs, qPCR, and RT-qPCR analyses were 
performed on an Agilent Stratagem Mx3005P instrument using the 

Protein Region name Protein ID Protein function Type of protein

ATPase Sun T ACT56858.2 ABC-type protease/lipase transport system, ATPase and permease 
components Type I secretion system

mfp Type IhlyD ACT56859.1 Membrane-fusion protein Type I secretion system

Serralysin Peptidase M10C ACT56857.1 RTX toxins and related Ca2+-binding proteins Secreted protein

408 T2SS-T3SS pilN ACT57211.2 Flp pilus assembly protein, secretin CpaC Secreted protein

24A Peptidase A24 ACT57202.1 Type II secretory pathway, prepilin signal peptidase PulO and related 
peptidases Type II secretory pathway

pap CpaC ACT57200.1 Flp pilus assembly protein, secretin CpaC Secreted protein

MSr fliF ACT57168.1 Flagellar biosynthesis/type III secretory pathway lipoprotein Type III secretory pathway

msp FliN ACT57161.1 Flagellar motor switch/ Predicted secreted (periplasmic) protein Secreted protein

fATP fliI ACT57157.1 Flagellar biosynthesis/type III secretory pathway ATPase Type III secretory pathway

377 COG5462 ACT57577.1 Predicted secreted (periplasmic) protein Secreted protein

Table 1: Characteristic summary of ten candidate secretory protein genes from Candidatus Liberibacter Asiaticus.

The database sources: NCBI Reference Sequence database (http://www.ncbi.nlm.nih.gov)

Figure 1: Relative DNA amount of six selected candidate secretory protein 
genes in QH and QZ samples. Statistical analysis was performed using 
student’s t-test. “*” represents P < 0.05.

http://www.ncbi.nlm.nih.gov
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HieffTM qPCR SYBR Green Master Mix with Low Rox Plus (Yeasan, 
Shanghai, China) according to the instructions, and each gene was 
measured three times independently. The total DNA from healthy 
green orange leaves was used as a negative control. The qPCR or RT-
qPCR mixture was 10 μL of HieffTM qPCR SYBR Green Master Mix, 
0.4 μL of Forward Primer (10 μM), 0.4 μL of Reverse Primer (10 μM), 
1 Μl of template DNA or cDNA, and 8.2 μL of ddH2O. The qPCR 
and RT-qPCR programs involved pre-denaturing at 95°C for 5 min, 
followed by 40 cycles of denaturing at 95°C for 10 s, annealing at 55°C 
for 30 s, extending at 72°C for 20 s, and a dissolution curves program 
using the Agilent Strata Mx3005P instrument. 

Recombinant plasmid construction and subcellular 
localization of 408 and pap proteins 

The 408 gene was amplified with the 408-gF/408-gR primers, 
while the pap gene was amplified by using the pap-gF/pap-gR primers 
(Table 1). The PCR reaction was conducted using PrimeSTAR HS 
DNA Polymerase kit (Takara, Dalian, China): 0.5 μL of PrimeSTAR 
HS DNA Polymerase (2.5 U/μL), 10 μL of 5 × PrimeSTAR Buffer 
(Mg2+ plus), 4 μL of dNTP Mixture (2.5 mM each), 2 μL of F/R (5 μM) 
primer, and 2 μL of total DNA, and ddH2O was added up to 50 μL. The 
PCR program involved pre-denaturing at 98°C for 3 min, followed by 
35 cycles of denaturing at 98°C for 30 s, annealing at 55°C for 30 s, 
extending at 72°C for 50 s; and finally, the reaction was terminated by 
post-extending at 72°C for 10 min. The amplified target fragments of 
408 and pap were gel-extracted by using the DNA Gel Extraction Kit 
(Omega Bio-Tek, Doraville, GA, USA) and subsequently, cloned into 
the plant expression vector GV1300 using T4 DNA ligase (Takara, 
Dalian, China). The recombinant plasmid was further transformed 
into Escherichia coli (E. coli) Trans 5a competent cells (Trans 
Gen, Beijing, China), and three positive clones were selected for 
bidirectional sequencing by 1300-F and 1300-R primers at Thermo 
Fisher (Guangzhou, China).

The recombinant plasmids of GV1300, GV1300-408, and 
GV1300-pap were transformed into Agrobacterium tumefaciens 
GV3101 competent cells by the freeze-thaw method, as described 
in Sparkes and Al [24]. The transfected tobacco leaves were cut into 
pieces of 1 cm × 1 cm, and fluorescence images were visualized on 
a microscope (FluoView FV1000D IX81; Olympus, Tokyo, Japan) 
to observe the subcellular localization of the fusion protein under 
wavelengths of 488 nm and 546 nm. 

Results
Preparation of total DNA and cDNA from diseased green 
orange leaves 

Total DNA extracted from two mixed samples were visualized on 
a 1% agarose gel, and the specific DNA bands of more than 10 kbp in 
lengths were consistent with the predicted sizes. Total RNA samples 
were also extracted from these two samples and were visualized on 
a 1% agarose gel. The results indicated that the RNA bands of 28S, 
18S, and 5S were abundant which suggests that a high quality of total 
RNA was obtained. The total RNA was further used to synthesize the 
first strand cDNA (1st cDNA) which subsequently could be used for 
RT-qPCR. 

Screening of candidate SPGs from HLB-infected green 
orange leaves 

PCR assayindicated that 408, 24A, fATP, pap, msp, and 377 
gene candidate SPGs were amplified and the length of each gene was 
consistent with the expected size. However, no band occurred due 
to the amplification of the ATPase, Serralysin, MSr, and MFP genes 
(Supplemental Figure 1). The target DNA fragments of these six genes 
were gel-extracted with the DNA Gel Extraction Kit (Omega Bio-
Tek, Doraville, GA, USA) and subsequently, cloned into a pMD19-T 
vector (Takara, Dalian, China) to transform them into Escherichia coli 
(E. coli) Trans 5a competent cells (TransGen, Beijing, China). These 
SPGs were sequenced with RV-M and M13-47 primers at Thermo 
Fisher (Guangzhou, China). 

Analysis of the real-time qPCR showed that the amplification plot 
of six SPGs and the internal reference gene shown in the “S” curve 
of QH and QZ samples (Supplemental Figure 2). Further analysis 
indicated that the DNA contents of the 408 and pap genes were 26.48 
and 9.36 times that of the 377 gene, while the other genes were 2.17-
4.11 times that of the 377 gene in the QH sample (Figure 1). In the 
QZ sample, the DNA contents of the 408 and pap genes were 15.20 

Figure 2: Relative RNA amount of 408 and pap candidate secretory protein 
genes in QH and QZ samples. Statistical analysis was performed using 
student’s t-test. “*” represents P < 0.05.

Figure 3: Subcellular localization of GFP, 408-GFP and PAP-GFP in tobacco 
leaf cells under the light of 488 nm and 546 nm. 35S, a constitutive promoter 
from the cauliflower mosaic virus; GFP, green fluorescent protein; Bar 
represents 20 μm.
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and 8.35 times that of the 377 gene, while the DNA content of the 24A 
gene was also relatively high, about 9.22 times that of the 377 gene 
(Figure 1). In summary, the relative DNA contents of the 408, pap, 
and 24A genes were relatively high in QH and QZ samples. 

The results from the RT-qPCR quantification did not match 
the DNA amount shown in the qPCR reactions. Of these six SPGs, 
only the 408 and pap genes had amplification curves, and the Ct 
value was between 15 and 35. Other genes did not have an obvious 
amplification curve, or their Ct value was more than 35 which should 
be insignificant (Verylowamountorunspecific amplification). Further 
analysis revealed that the relative transcription level of the 408 gene 
was 2.43 higher than the transcription level of the pap gene in QH 
sample. In the QZ sample, the relative transcription level of the 408 
gene was 9.45 higher than the transcription level of pap gene, and the 
relative transcript RNA level was much higher than that of the 408 
gene in the QH sample (Figure 2). In this study, two relatively high 
transcription levels of SPGs were screened from the ten candidate 
SPGs. 

Subcellular localization of 408 and pap proteins
In order to further clarify the distribution of the 408 and pap 

proteins in the host cells, the recombinant plasmids of GV1300-408 
and GV1300-pap were transformed into Agrobacterium tumefaciens 
GV1301 competent cells. Then, the positive clones were identified 
by colony PCR (Single colony was used as template), as described 
above. After injection of GV1300-408/GV1301 and GV1300-pap/
GV1301 into the tobacco leaves, fluorescence images were visualized 
by microscopy at 72 hours postinoculation (h.p.i.). The green 
fluorescence signal from the 408-GFP fusion protein was observed 
in the nuclei and cytoplasms of tobacco leaf cells, while the green 
fluorescence signal of the pap-GFP fusion protein was observed in the 
radially-arranged micro-fibrils of tobacco guard cells. These results 
indicate that the 408 protein localizes in the nucleus and cytoplasm 
tobacco mesophyll cells, but the pap protein localizes in the radially-
arranged micro-fibrils of tobacco guard cells. In addition, the GFP 
protein is localized in the cytoplasms and the nuclei of tobacco 
mesophyll cells (Figure 3).

Discussion
Bacteria-secreted proteins play important roles in pathogenicity 

and infection in host cells [25,26]. Briefly, pathogenic bacteria have a 
number of different protein secretion systems and secrete virulence 

Gene Primer name Primer sequences (5’-3’) Length (bp)  

ATPase
ATPase-F CCATAAAAACGCTATTGCGATGATC

1841

For PCRassay

ATPase-R CTTTTAAGGGATGCAGGGTGATTTC

mfp
Mfp-F TCAATACCGTCACTCACAATCAGA

1399
Mfp-R GAGAGGATGAGATTGTTGATTGGG

Serralysin
Serralysin-F CTCCACATTTTATTAAAGAAGGTCTTGG

2154
Serralysin-R GGCTCGGAAACCACAATGCC

408
408-F CCCTTGCCGCCTTTACCTCC

495
408-R GCGCGTCAGGTAGATGATCAG

24A
24A-F GGCTTAGGGTTCTTCTATTCTTATGC

726
24A-R CCACTATTCCCATCAGTCGAGTT

pap
pap-F CGGTAGCTAAGTTATCACTAGTATTGC

1632
pap-R CCCCTTGAAACACACACCTCCG

MSr
MSr-F GCACAAGCTTATATCAGTAGAGACC

1810
MSr-R ACCTAACCCTTGTGATATATGTGCC

msp
msp-F CCTGTGAATTAGGTCGTGTTGGG

582
msp-R GTTCAAAACCAATACACCTTTTTATTCAG

fATP
fATP-F CCATGTTGGAGGCGATAAGAAATATC

1420
fATP-R CCTTACCATCTCTTGTTCTATTGCTC

377
377-F CGTGCAGGAATGCGTACTGTAG

510
377-R CTAGAAGTATAACCTCCCCACTCG

408
408-gF CGCGTCGACTTGCATCGTAAGCGCC (Sal I)

423

Recombinant plasmids construction
408-gR CGCACTAGTCCTGACGGGAGGAGAGGAG (Spe I)

pap
pap-gF CGCGTCGACATGAGGTATTTGCAACGCAC (Sal I)

1440
pap-gR CGCGGATCCTTTATAAATAAAACCAATTGCACC (BamH I)

GV1300
1300-F AACTTGTGGCCGTTTACGTCG

207 Primers for GV1300
1300-R TTTGGAGAGAACACGGGGGAC

Table 2: Thirteen pair-primers designed from candidate secretory protein genes of Candidates Liberibacter Asiaticus or GV1300 for this study.

Note: The bold sequences represent the restriction enzymes.
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factors extracellularly or directly to the host via these secretion 
systems. Currently, it is known that there are at least eight protein 
secretion systems in Gram-negative bacteria [18]. Candidatus 
Liberibacter Asiaticus has incomplete type III and type IV protein 
secretion systems and a complete type I protein secretion system. 
In this study, the obtained 408 gene was secreted by the type III 
secretion system, while the pap gene was secreted by the type IV 
secretion system [22]. The Flp pilus, which is assembled by the 
proteins encoded by the flp (fimbrial low-molecular-weight protein) 
operon, may play an important role in bacterial adherence. Here, 
both of 408 and pap proteins are flp pilus assembly proteins. Pili, 
flagella, and other adhesive structures usually assemble at the cell 
surface of Gram-negative bacteria. The ability of diverse bacteria to 
adhere to host cell surfaces is an important property and a critical 
step in colonization [27]. Therefore, 408 and pap may be involved in 
these adhesive organelle assemblies via the extracellular nucleation-
precipitation pathway [28]. Furthermore, subcellular localization 
analyses indicated that the 408 protein is located in the nuclei and 
cytoplasms of tobacco leaf cells. This suggests that the 408 gene 
may have other functions besides the formation of flagella on the 
bacterial surface. However, the pap protein was shown to be located 
in the radially-arranged micro-fibrils of tobacco guard cells and may 
interact with host cells to help pathogens invade into plant cells. 

At present, the effective detection methods of pathogen 
microscopy, Loop-Mediated Isothermal Amplification (LAMP), PCR 
and real-time quantitative PCR were available for HLB diagnosis 
[3,29-33]. However, a protein detection technology for citrus 
Huanglongbing with convenience and high sensitivity at a large-scale 
needs to be developed. Although Yuan et al. and Liu et al. reported 
monoclonal antibodies against Candidatus Liberibacter Asiaticus 
[34-36], there are no commercial products available yet. In order to 
prepare an antiserum against the Candidatus Liberibacter Asiaticus 
for the early detection and prevention of citrus HLB, ten SPGs were 
selected from different protein secretion systems of Candidatus 
Liberibacter Asiaticus and tested by PCR, qPCR, and RT-qPCR, and 

Gene Primer 
name Primer sequences (5’-3’) Length 

(bp)

408
408-F CTGTACTCCAAGATGCCTACC

131
408-R CGTGCCTATCATGCTTGTTTC

PAP
PAP-F AGCCAGTAATCGGAGTCAATG

119
PAP-R TCATCTTTCAATAACCCCGCC

MSP
MSP-F AGACATGTGCCATTTTAAGTGC

96
MSP-R TCTATCTGTTATGCGAATCGTGT

377
377-F CCAAGAGAACTGTAGAAAGGCG

147
377-R AGAAGTATAACCTCCCCACTCG

24A
24A-F GGGTGGAGGGGATGTAAAATT

113
24A-R GACAGATAATATTCCGCCTAAAATAGC

fATP
fATP-F ATAGCGGATTCTGTTCGTAGC

136
fATP-R ATCAGCACTCCAAGCCTTATC

18Sr RNA
18Sr RNA-F TCGGGTGTTTTCACGTCTCA

120
18Sr RNA-R TGGATGCCGCTGGGAAGC

Table 3: Primers designed from six selected candidate secretory protein genes of 
Candidatus Liberibacter Asiaticus for quantitative real-time PCR analysis.

two SPGs of 408 and pap with relatively high DNA contents and 
their transcription level were identified. This provides an important 
scientific basis for the preparation of an antiserum against Candidatus 
Liberibacter Asiaticus and the early detection and prevention of citrus 
HLB.
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