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Abstract

Mesenchymal stromal cells (MSCs) represent a small and heterogeneous 
subpopulation of mesenchymal stem cells that possesses multilineage 
differentiation potential. These cells are mainly present in bone marrow, but also 
in other tissues, and represent a valuable resource for their ability to differentiate 
into different cell lines and for many therapeutic approaches. MSCs are able to 
differentiate into cells of mesodermal origin such as adipocytes, chondrocytes, 
osteoblasts or fibroblasts and in vitro also into cells of non-mesodermal 
lineages. In bone marrow, they establish the microenvironment for the growth 
and differentiation of the hematopoietic stem cells (HSCs) resulting crucial for 
HSC maintenance and haematopoiesis. Nevertheless, the proliferation and/or 
the survival rate of MSCs may contribute to the onset of different types of bone 
sarcomas, such as Osteosarcoma, Chondrosarcoma and Giant Cell Tumor of 
Bone that represent the result of neoplastic degeneration of their corresponding 
committed mesenchymal precursors, probably as a consequence of the 
alteration of different or common biochemical pathways.
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commitment are activated by micro-environmental conditions that 
include hormones (PTH, vitamin D3 and estrogen), growth factors 
(BMPs, TGFβs, IGF), and mechanical stimuli. In addition, there is 
an increasing interest in the role of non-coding RNAs (miRNAs) as 
well as of epigenetic mechanisms regulating the differentiation fate of 
MSC [16-18].

Mesenchymal Stromal Cells Differentiation 
Haematopoietic stem cells mainly reside within the bone marrow, 

which is the primary site of HSC maintenance and haematopoiesis 
and also contains many other different non-haematopoietic cell 
types (Figure 1). Stromal and differentiated cells (chondrocytes, 
osteoblasts, fibroblasts, adipocytes) compose this microenvironment, 
normally referred as stroma [19,20]. Particularly, mesenchymal 
stromal cells that are committed toward osteoblast lineage express 
bone sialoprotein, osteonectin, osteopontin, osterix and Runx2 
(runt-related transcription factor 2) [21]. Many different biochemical 
pathways drive this osteoblast differentiation program including 
Fibroblast Growth Factors (FGFs) and WNTs signaling [22,23]. 
Specifically, FGF receptor ligands are involved in proliferation 
and osteoblast differentiation of mesenchymal precursors and 
therefore in bone deposition, through the interaction with four 
type of fibroblast growth factor receptors (FGFRs) [24,25]. FGFR3 
and FGFR4 are involved in the differentiation of chondrocytes. On 
the other hand FGFR1 is involved in osteoblast proliferation while 
FGFR2 promotes osteoblast differentiation of mesenchymal stem 
cells promoting Runx2 expression and inhibiting TWIST1 [26,27]. 
Also Wnt signalling is involved in MSCs proliferation and in the 
regulation of the osteogenic differentiation [28]. Canonical Wnt 
signaling can be activated by the interaction of several secreted Wnt 
ligands with frizzled receptors and with the co-receptor Lipoprotein 

Bone Marrow and Stem Cell Niches
Bone plays an essential role in the structure and movement 

of the body, and consists of cells (osteoclasts and osteoblasts) at 
different developmental stages, collagen fibrils, and mineral deposits 
such as calcium and phosphate. The bone cavity is filled with soft 
bone marrow that is the primary postnatal site of several stem cells 
including those of haematopoietic and mesenchymal lineages [1-
5]. The stem cell niche represents the microenvironment created 
by supporting cells and their signals, in which stem cells reside and 
undergo self-renewal and differentiation [6-7]. The ability of adult 
stem cells to self-renew and differentiate is a critical point for tissue 
homeostasis: the depletion of this population occurs as a consequence 
of boosted self-renewal rate. On the other hand, the uncontrolled 
expansion of stem cells population, could promote tumorigenesis. 
The quiescence of stem cells within the niche is essential, about 70% 
of which are in the G0 phase of the cell cycle. Particularly, it has been 
shown that approximately 30% of the quiescent Haematopoietic 
Stem Cell (HSC) divide every 145–193 days (protecting them from 
DNA damage by limiting the number of their cellular divisions), 
while a more active subpopulation divides every 28–36 days [8]. 
One mechanism that ensures the balance between self-renewal and 
differentiation processes is the control of asymmetric/symmetric 
stem cell division. In asymmetric division the stem cells divide into 
2 daughter cells: one daughter cell remains in the niche as a stem 
cell and the other leaves the niche to produce a committed cell 
population. In symmetric division stem cells divide into 2 identical 
daughter cells that remain both in the niche as stem cells. The last 
decade has witnessed an increasing interest in stem cells niches, even 
if the number of niches in bone marrow, their cellular composition as 
well as their interactions are yet to be clearly determined [6,9-15]. The 
biochemical pathways promoting Mesenchymal Stem Cells (MSCs) 
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Receptor Related Protein 5/6 (LRP5/6). Wnt activation, involves 
different effectors such as β-catenin, JNK and calcium-channels 
regulators. Cytoplasmatic β-catenin accumulation and its nuclear 
translocation promote the activation of several oncogenes (e.g., 
c-Myc) and of different metalloproteinases, promoting extracellular 
matrix (ECM) degradation and cellular invasion and migration [29]. 
Wnt3a ligand has a modulatory function in chondrogenesis through 
bone morphogenetic protein (BMP)-2 expression; Wnt7a enhances 
chondrogenesis through various TGFB1-MAPK signaling pathways; 
and Wnt1 inhibits chondrogenesis promoting TWIST1 up-regulation 
[30].

Mesenchymal Stromal Cells in Solid Tumor
 Recent studies showed that MSCs are involved in tumorigenesis, 

being able to integrate into solid tumors [31,32]. Marrow 
stroma formation is essential for tumor growth and requires the 
interaction between malignant tumor cells and non-malignant 
stromal cells [31,32]. Mesenchymal stromal cells represent the 
neoplastic component of different bone sarcomas: Osteosarcoma, 
Chondrosarcoma and Giant Cell Tumor of Bone Figure 2).

Osteosarcoma
Osteosarcoma (OS) is the most common primary solid 

malignant tumor of the bone that occurs in the metaphyseal regions 
of long bones, mainly in young patients [33]. Almost constantly 
intramedullary, it may rarely originate at the bone surface. OS shows 
high tendency and resistance to conventional chemotherapeutic 
treatment and the majority of secondary recurrences are due to 
pulmonary metastasis [34]. This bone sarcoma is a consequence of 
genetic and epigenetic alterations in mesenchymal progenitor cells 
committed toward osteoblastic lineage that produce osteoid and/or 
immature bone resulting in sarcomatous degeneration [35]. Several 
studies hypothesized that this tumor could derive from less mature 
precursors of osteoblast cells because these cells are able to differentiate 

in chondroblastic, fibroblastic and osteoblastic components [36]. 
Germline mutations in retinoblastoma (Rb) and in Tumor suppressor 
p53 (TP53) genes are associated with OS development. Other 
genes are probably involved, but the high rate of genetic instability 
that characterizes this tumor complicates the identification of the 
causative gene. Interestingly, OS patients show aberrant activation 
of the Wnt signaling due to an accumulation of β-catenin in the 
cytoplasm or in the nucleus [37]. Therefore, Wnt signaling hyper 
activation enhances the expression of c-myc oncogene, responsible 
for neoplastic proliferation of OS cells, and of several MMPs (MMP-9 
and MMP-14), responsible for OS metastatic invasion and associated 
with poor disease survival [38]. The mesenchymal nature of OS 
cells is also supported by GLI2 over-expression in OS patients, a 
transcription factor whose over-expression enhances mesenchymal 
stem cells proliferation and accelerates cell cycle progression [39-41].

Giant cell tumor of bone
Giant Cell Tumor of Bone is an aggressive osteolytic bone 

neoplasm composed of three major cell types: mesenchymal 
stromal cells, mononuclear (CD68 positive) histiocytic cells and 
multinucleated osteoclast-like giant cells [42]. Although this tumor 
mainly arises in the epiphyses of long bones of the appendicular 
skeleton, it can also occurs in other areas [43]. Histologically, GCT 
lesion is made up of several multinucleated giant cells that are 
uniformly distributed among mononuclear spindle-like stromal cells 
and monocytes. Particularly, mononuclear hystiocitic cells (MNHC) 
and multinucleated giant cells are considered to belong to the 
monocytic-histiocytic system, because both cell lines express CD68 
antigen. It is widely accepted that MNHC and MNGC are secondarily 
recruited and do not constitute the neoplastic cell population. In fact, 
the neoplastic component of the tumor is represented by spindle-
like stromal cells, which are able to proliferate in vitro and to form 
tumors in mice [44]. A recent study definitively demonstrated that 
MSCs represent the neoplastic component of GCT because only 
stromal cell compartment (CD51-/CD61-/CD14-) show somatic 
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Figure 1: Bone marrow niches and stem cells differentiation. In 
Haematophoietic niche, MSCs contribute to the creation of microenvironment 
that promote haematopoietic stem cells differentiation in myeloid and 
lymphoid progenitors, that differentiate in several blood components such as 
lymphocytes, granulocytes, platelets and eritrocytes. In Mesenchymal Stem 
Cell niche, MSCs differentiate in mesenchymal stromal cells and then in 
osteoblasts, condrocytes, adypocites and fibroblasts in response to different 
transcription factors.
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Figure 2: Mesenchymal origin of different bone sarcomas. Mesenchymal 
origin of different bone sarcomas deriving from different committed stromal-
related cells: Osteosarcoma, derives from uncontrolled proliferation of 
MSCs committed to osteoblastic lineage; Giant Cell Tumor of bone is 
caused by neoplastic proliferation of immature mesenchymal stromal cells; 
Chondrosarcoma, derives from uncontrolled proliferation of MSCs committed 
to chondroblastic lineage.
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mutations (G34W or G34L) in H3F3A gene, which is mutated in 92% 
of conventional GCT patients [45]. Conversely, H3F3A mutations 
are not detected in giant cell osteoclasts-like (CD51+/CD61+), that 
represent the osteolytic component of GCT. Giant cells derive from 
hematopoietic precursors and their formation is directed by the 
stromal cells that produce several chemokines, including stromal 
cell-derived factor-1 (SDF-1) and monocyte chemoattractant 
protein-1 (MCP-1), that recruits monocytes to the tumor site [46,47]. 
Besides, stromal cells also produce macrophage colony-stimulating 
factor (M-CSF) that is responsible for monocytes proliferation 
and differentiation [48]. M-CSF also induces RANK expression on 
monocytes [49]. The mechanism by which H3F3A mutations drive 
GCT onset is unknown but it can be hypothesized that histone 3.3 
mutations directly lead to the alteration of expression of FGF and/
or Wnt signaling. Recent studies demonstrated that GCT patients 
showed high expression of FGFR2IIIc and TWIST1, two osteogenic 
markers that regulate MSCs terminal osteoblast differentiation [50-
52]. Indeed, the mechanism through which FGFR2-IIIc contributes 
to MSCs uncontrolled proliferation remains unclear; it could be 
speculated that high levels of FGFR2IIIc should promote MSCs 
osteoblastic differentiation through Runx2 expression. TWIST1 
high levels inhibit Runx2 expression and cause the maintenance of 
mesenchymal stromal cells in immature state. The high recurrence 
GCT rate upon surgical removal may result from residual stromal 
cells that are capable of re-forming the tumor that expresses Stro-1 
was reported to have stem-like properties [53]. Again, the neoplastic 
role of the mesenchymal component is supported by the identification 
that MMP-2 and MMP-9 are expressed in the stromal cells [21]. 
Microarray analysis confirmed MMP-9 high expression in whole 
GCT tumor samples and in stromal cells [54,55]. In conclusion, GCT 
is bone sarcoma whose genetic lesion has recently been identified 
arising as a result of the uncontrolled proliferation of MSCs.

Chondrosarcoma
Conventional chondrosarcomas represent about 90% of all  

chondrosarcomas and are  divided according to their location 
in primary and secondary. The majority is primary and arises 
in intramedullary cavity of bone and is classified into three 
grades of malignancy (from I to III) [56,57]. Less differentiated 
chondrosarcomas cells, show more similarity with MSCs, 
while more differentiated chondrosarcomas share similarities 
with fully differentiated chondrocytes [58]. Histological and 
immunohistochemical analyses reveal that chondrosarcoma consists 
of cells that are in a different differentiation state [59]. The neoplastic 
component of chondrosarcoma is unknown and no evidence of 
neoplastic degeneration of adult chondrocytes has been reported. 
However, the mesenchymal nature seems evident especially for 
grade III chondrosarcomas, because in its muco-myxoid matrix the 
cells at the periphery of the lobules may become spindle-shaped, 
resembling a less differentiated phenotype [60]. Therefore, although 
the mesenchymal nature of this extremely heterogeneous tumor 
remains dubious, there is a growing body of evidence identifying it 
as an additional tumor that results from uncontrolled proliferation 
of mesenchymal cells that are committed toward chondrocyte line.

Mesenchymal Stromal Cells in Cancer 
Therapy and Other Clinical Conditions

MSCs have generated a great interest in oncology for their 

ability to repair which makes them particularly suitable in cell-based 
therapies [61]. Moreover, because of their remarkable capacity to be 
recruited from bone marrow into the blood circulation and then into 
damaged sites, MSCs could be used as vehicles for anti-cancer drugs 
[62,63]. After intravenous infusion, MSCs accumulate in liver cancer-
derived structures as well as in tumor stroma in breast cancer and 
osteosarcoma, while in hematological malignancies MSCs autologous 
transplantation improves hematopoietic stem cells engraftment in 
bone marrow [63-66]. Tumor-tropic migratory properties of MSCs 
derive from stimuli produced by the tumor tissue (chemokines) 
and from their intrinsic properties (chemokine receptors) [67]. 
For this reason, MSCs have also been used as vehicles to efficiently 
deliver oncolytic viruses into tumors and metastatic sites in models 
of breast carcinoma, ovarian cancer and glioma [68-71]. The tumor-
suppressive effects of MSCs are due to the down-regulation, through 
Wnt inhibitors, of Wnt signaling target genes that are involved in 
anti-apoptosis, cell proliferation and cell cycle regulation [72,73]. This 
effect could also derive from their ability to inhibit NF-kB pathway in 
cancer cells and to produce tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL), inhibiting different type of tumor growth 
[74,75]. Therefore, the mechanisms of MSCs-based cancer therapy 
are not yet completely clear and further studies are required to 
ensure the quality and bio-safety of MSCs. MSCs properties also 
represent an important bio-resource for novel cell and gene-based 
therapeutic strategy of several non-tumoral conditions. Their 
capacity to regenerate mesenchymal tissues strongly supports their 
use in regenerative medicine to replace or repair damaged tissues 
of mesenchymal origin [76]. Moreover, for their ability to trans-
differentiate into cell lineages belonging to not-mesoderm embryonic 
layers (e.g. neurons, liver, kidney and spleen), MSCs represent a 
useful tool for the treatment of several medical conditions including 
stroke, spinal cord injuries, acute kidney failure or act as multidrug 
dispenser to favour tissue regeneration [77,78]. The driving force of 
MSCs use derives from their role in immune response modulation as 
they show low inherent immunogenicity, which allows their use for 
both autologous and allogeneic cell therapies. The non-immunogenic 
property of MSCs is due to the absence of the expression of class II 
MHC molecules on their surface that render them able to inhibit T 
cells activation [79,80].

Conclusion
Studies focused on mesenchymal stromal cells are important 

to accumulate evidence and information to define their nature for 
therapeutic approaches. Moreover, this type of information seems 
crucial to prevent neoplastic degeneration of their committed cell or 
at least to design better therapeutic approaches for affected patients.
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