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Abstract

Federated Learning and Transfer Learning are two distinct ma-
chine learning methodologies that have typically been applied 
independently. However, combining these approaches offers the 
potential to deliver significant value across various industries. This 
paper systematically reviews existing literature on both technolo-
gies and introduces a novel framework that integrates Federated 
Learning and Transfer Learning to improve machine learning model 
performance. The proposed framework can be utilized in a range 
of applications, including healthcare (for detecting heart attacks, 
cancer, and strokes), retail (for predicting customer churn), and in-
dustrial sectors like Power Grids, Oil & Gas and Manufacturing (for 
identifying equipment failures, grid loads etc). By merging these 
technologies, this framework enhances model accuracy and scal-
ability while ensuring data privacy in distributed environments.
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Introduction

Federated Learning (FL) and Transfer Learning (TL) are of-
ten confused as being the same concept, although they have 
distinct differences despite some similarities in reusing knowl-
edge across tasks. TL involves using a pre-trained model (typi-
cally trained on a large dataset) and fine-tuning or adapting it 
to a new, related task or domain [1-3]. This allows the model 
to leverage knowledge gained from a source task to improve 
performance on a target task, especially when the target task 
has limited data. For example, a model trained on ImageNet 
(a large dataset of images) can be fine-tuned to classify medi-
cal images. Federated TL (FTL) is a combination of FL and TL. 
In FL, models are trained across multiple decentralized devices 
or servers, with data remaining on the local devices instead of 
being shared or centralized [1,4,5]. In FTL, the goal is to allow 
models at different locations or with different datasets to learn 
collaboratively without sharing data. This approach is particu-
larly useful when datasets from different organizations (such as 
companies or institutions) are related but cannot be shared due 
to privacy concerns or regulatory restrictions. For example, dif-
ferent insurance companies can contribute to a shared model 
without sharing proprietary data but can still benefit from the 

insights across their datasets. The advantage of using these 
two technologies together is that it brings the best of both ap-
proaches. A model trained using TL can be further enhanced 
by FL, enabling it to benefit from diverse, distributed datasets 
without requiring direct data sharing. This approach leverages 
pre-trained knowledge from a source domain while simultane-
ously training the model across multiple organizations or de-
vices in a privacy-preserving manner, leading to improvements 
in accuracy, generalization, and applicability in scenarios with 
sensitive or proprietary data. Imagine a model pre-trained on 
a specific dataset within an industry, which is then fine-tuned 
to be organization specific. FL can further amplify this learning 
by allowing the model to train on data from multiple organiza-
tions, resulting in a highly accurate model which is one of the 
most innovative techniques in machine learning. In healthcare, 
privacy is of utmost importance due to regulations like HIPAA 
and GDPR [1,4]. FL allows hospitals and medical institutions to 
collaboratively train models on patient data without sharing 
sensitive information, ensuring privacy [1]. TL can be used to 
apply pre-trained models (such as those trained on large, public 
medical datasets) to specific tasks, like diagnosing rare diseas-
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es or analyzing medical imaging data [4]. For instance, a pre-
trained model for general image recognition (TL) can be fine-
tuned to recognize brain tumors in MRI scans using FL across 
hospitals [1]. Each hospital can adapt the model using its local 
data without sharing patient information, resulting in a high-
performance model while maintaining data privacy.

In the insurance industry, companies have vast amounts of 
private data, such as claims data and customer profiles. FL al-
lows different branches or companies to collaboratively train 
models to detect fraudulent claims or assess risks without ex-
posing sensitive customer information [3]. TL helps these com-
panies quickly adapt models pre-trained on general insurance 
data to specific local markets or types of insurance products. 
For example, a global insurance company can use a fraud detec-
tion model trained on generic fraud cases (TL) and refine it for 
local regions using FL. Local branches can use their own claims 
data to update the model without sharing sensitive customer 
information with other branches or regions.

In the banking sector, privacy and security are critical due to 
regulations like PSD2. FL enables different banks to collabora-
tively train models on transaction data to detect fraud or as-
sess credit risk, without sharing actual customer data [6,7]. TL 
allows pre-trained models from one bank to be adapted to new 
regions or product offerings [6,7]. For instance, a pre-trained 
credit scoring model (TL) can be shared and adapted across dif-
ferent banks or regions. Using FL, banks can refine the model 
using their local customer data, ensuring the model reflects the 
credit behavior of their clients while maintaining data privacy 
compliance.

In the retail sector, FL helps companies personalize product 
recommendations by training models across multiple retail out-
lets or online platforms without sharing customer data [8]. TL 
allows retailers to use pre-trained models for general customer 
behavior and adapt them to specific demographics or regions. 
For example, a pre-trained model for general customer purchas-
ing behavior (TL) can be fine-tuned for specific stores or regions 
using FL. Each retail store can locally train the model on its cus-
tomer data to create personalized recommendations without 
sharing purchase histories with other stores or a central server.

Several pre-trained models are available from leading cloud 
providers. For healthcare, examples include Amazon HealthLake 
[9], which uses machine learning to extract meaningful infor-
mation from healthcare data, and Google Cloud's AutoML [10], 
which provides models for medical image classification and nat-
ural language processing for clinical text. In retail, Amazon Per-
sonalize [11] offers individualized product recommendations, 
while Google Cloud’s Recommendations AI [10] provides tai-
lored shopping recommendations for e-commerce platforms. In 
financial services, Amazon Fraud Detector is specialized in iden-
tifying fraudulent activities based on transaction data, while 
Google Cloud offers tools for building fraud detection systems. 
These models can be used as the initial TL models, after which 
specific FL can be applied to tailor them to individual organiza-
tions.

In conclusion, combining FL and TL offers significant po-
tential across industries by integrating the privacy-preserving 
capabilities of FL with the knowledge reuse of TL. This hybrid 
approach allows models to be collaboratively trained on de-
centralized datasets without compromising data privacy, while 
also adapting pre-trained models to specific tasks in different 
domains. The integration not only enhances the accuracy and 

generalization of models but also ensures compliance with 
regulatory standards, making it particularly useful in sensitive 
sectors such as healthcare, insurance, finance, and retail. As in-
dustries continue to evolve, this combined approach will play a 
pivotal role in building scalable, secure, and efficient machine 
learning systems.

Literature Review

FL and TL have been extensively utilized across industries 
to enhance privacy, boost model efficiency, and adapt models 
to new tasks. FL enables decentralized model training by dis-
tributing computation across multiple devices or institutions, 
ensuring that sensitive data remains localized. TL, meanwhile, 
facilitates the use of pre-trained models to transfer knowledge 
from one domain to another, improving performance and re-
ducing the reliance on large datasets for new tasks. Through a 
comprehensive literature review, we explored various applica-
tions of FL and TL across industries like healthcare, autonomous 
systems, IoT, smart manufacturing, and more. Studies indicate 
that integrating FL and TL improves accuracy, reduces training 
time, and enhances privacy, making them vital tools for modern 
AI applications.

Literature Review

Authors in [1] integrated FL and TL for brain tumor classifica-
tion using MRI images. FL was used to decentralize model train-
ing across multiple institutions while ensuring data privacy. TL, 
using a pre-trained VGG16 CNN, improved the model's perfor-
mance by leveraging knowledge from large datasets. The model 
achieved high accuracy, precision, and recall rates, with an over-
all accuracy of 98%. This method outperformed traditional ap-
proaches, maintaining data privacy and ensuring accurate clas-
sification of brain tumors.

As part of their work in [2], the authors developed a method 
called PrivateKT, integrating FL with differential privacy. FL al-
lowed the decentralized training of models, while knowledge 
was transferred via small, carefully selected public datasets to 
ensure privacy. TL leveraged these public datasets to enhance 
model training efficiency without accessing sensitive data. Ex-
perimental results demonstrated that PrivateKT reduced per-
formance degradation in privacy-constrained environments, 
achieving up to 84% of the performance of centralized learning 
models, even under strict privacy measures. The model per-
formed well on tasks like digit classification, disease prediction, 
and pneumonia detection.

As part of [3], the authors reviewed the integration of FL 
and TL. FL was utilized for decentralized model training, ensur-
ing privacy by preventing data sharing across participants. TL 
enabled knowledge transfer between participants, minimizing 
data distribution disparities and enhancing model utility. The 
authors demonstrated that combining these methods mitigated 
challenges like data and system heterogeneity. Experimental re-
sults showcased improved performance in scenarios involving 
multiple domains and incremental data.

As part of their research, the authors in [4] employed FL 
combined with TL to enhance privacy-preserving breast cancer 
classification. FL enabled collaborative model training across 
multiple medical centers while ensuring data privacy. TL was 
integrated with a pre-trained ResNet model to fine-tune breast 
cancer classification tasks. The model achieved a classification 
accuracy of 98.8%, with an F1-score of 98.2% and a computa-
tional time of 12.22 seconds. This approach demonstrated im-
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proved generalization across diverse datasets without compro-
mising data privacy.

As part of their research [5], the authors employed feder-
ated TL to enhance flow-based traffic classification. FL was 
used to collaboratively train models across different silos while 
preserving data privacy. TL allowed the transfer of knowledge 
from a source model to a target model, improving both accu-
racy and training efficiency. The source model was trained for 
application-level traffic classification, while the target model 
was trained for VPN/non-VPN identification. The target model 
outperformed the baseline model in validation accuracy (0.90 
vs. 0.85) and training time.

Authors in [12] proposed FTLIoT, a Federated TL (FTL) frame-
work to enhance security in IoT networks. FL was employed to 
allow multiple IoT devices to collaboratively train intrusion de-
tection models without sharing raw data, ensuring privacy. TL 
enabled the model to adapt to new tasks quickly by leveraging 
previously trained models. Experimental results showed that 
using CNN and DNN algorithms led to an accuracy improvement 
of 1.44% and 5.55%, respectively. The model also reduced train-
ing time by 36.11% for CNN and 38.62% for DNN.

Authors in [13] proposed a blockchain-enabled Federated 
TL (FTL) schema for autonomous vehicular systems to reduce 
latency and enhance security. The FTL framework enabled dis-
tributed learning across edge devices, minimizing data transfer 
and improving model accuracy. Blockchain integration ensured 
privacy and security in the communication process. The experi-
mental results demonstrated better scalability, reduced latency, 
and improved data rate efficiency in vehicular networks. The 
proposed model outperformed traditional methods, showing a 
higher reliability in autonomous vehicular environments.

As part of [14], the authors introduced TinyFedTL, the first 
open-source implementation of Federated TL (FTL) on resource-
constrained IoT devices. FL enabled decentralized model train-
ing on devices with limited memory (less than 1MB), while TL 
allowed the use of pre-trained models for new tasks. The system 
was tested on the Arduino Nano 33 BLE Sense with CIFAR-10 
datasets. Results showed that TinyFedTL maintained constant 
memory usage while learning continuously, using only 210KB 
of dynamic memory and reducing training time compared to 
existing models.

As part of their study, the authors in [15] proposed a hierar-
chical federated TL (HFTL) model for secure and efficient fault 
classification in additive manufacturing. FL was used to enable 
distributed training across multiple servers while preserving pri-
vacy. TL was applied to adapt pre-trained models for fault de-
tection in 3D printing. Experimental results demonstrated that 
HFTL reduced training time by 24%, improved accuracy by 45%, 
and increased F1-scores by 59% on non-IID data compared to 
traditional methods. The model efficiently handled distributed 
data and improved performance in the fault classification of 3D-
printed products.

As part of their research [16], the authors introduced a novel 
federated TL framework called CPFTL-CGAN for smart manufac-
turing. FL enabled decentralized model training across different 
clients, while TL allowed knowledge transfer from a pre-trained 
model to a target task. The Collaborative Generative Adver-
sarial Network (CGAN) generated high-quality synthetic data to 
facilitate TL without compromising data privacy. Experimental 
results demonstrated that the proposed framework improved 

classification accuracy by up to 93.6%, with enhanced precision, 
recall, and F1 scores, while significantly reducing communica-
tion rounds compared to baseline methods.

As part of their research, the authors [17] developed a Hash-
graph-based FL approach (HFLA) for securing multi-domain 5G 
networks. FL was used to train models across decentralized de-
vices without compromising data privacy. The hashgraph tech-
nology ensured robust protection against Sybil, DDoS, and oth-
er attacks by utilizing asynchronous Byzantine fault tolerance. 
Experimental results from the Federated 5G testbed showed 
that the proposed method effectively prevented poisoning and 
membership inference attacks while maintaining high model ac-
curacy and training efficiency.

As part of [6], the authors proposed a digital currency system 
that integrates FL and TL to enhance transaction privacy while 
maintaining regulatory oversight. FL was used to allow multiple 
nodes to collaboratively train models without sharing sensitive 
transaction data, preserving privacy across different partici-
pants. TL enabled the adaptation of pre-trained models to new 
environments, reducing the time and data needed for imple-
mentation in different contexts. The authors demonstrated that 
the system successfully protected transaction amounts using 
homomorphic encryption and offered controllable anonymity, 
meeting both privacy and regulatory requirements.

As part of [7], authors have developed a graph mining ap-
proach for detecting suspicious transactions, specifically those 
related to money laundering. The method built a model that 
identified subgraphs of transactions based on fuzzy parameters, 
which captured both transaction values and their structural re-
lationships. FL was used to aggregate data from various finan-
cial institutions without revealing sensitive information, and TL 
helped adapt models to new transaction data. The experimen-
tal results showed that the method effectively detected illegal 
transactions while minimizing false positives, improving the ef-
ficiency of human review processes.

In research [8], the authors introduced a FL approach to de-
tect data hidden in mobile application icons delivered through 
web and multiple stores. FL was used to allow distributed nodes 
to train models on local datasets, preserving data privacy while 
identifying steganographic threats. TL facilitated adapting the 
models to different types of encoding schemes like Base64 and 
zip compression. Experimental results showed that the feder-
ated approach achieved detection performance comparable to 
centralized models, with an AUC of 97.1% for plain text and sig-
nificant improvements in detecting obfuscated payloads.

Summary

Based on the reviews performed, FL and TL have demonstrat-
ed significant potential in medical image classification, such as 
brain tumor and breast cancer detection. These methods en-
able institutions to collaborate on improving diagnostic models 
while maintaining patient data privacy. Pre-trained models like 
VGG16 and ResNet have been critical in enhancing classification 
accuracy and efficiency. In the automotive and smart manu-
facturing sectors, FL and TL have shown improvements in fault 
detection, operational efficiency, and security. Autonomous ve-
hicular systems benefited from reduced latency and improved 
accuracy, while smart manufacturing processes saw higher per-
formance in fault classification. Technologies such as blockchain 
and generative adversarial networks (GANs) further bolstered 
privacy and security. In 5G networking, FL and TL help safeguard 
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networks against DDoS and Sybil attacks, with hashgraph tech-
nology ensuring robust protection while maintaining model ac-
curacy and training efficiency. The benefits observed in these 
reviews include improved data privacy, better model accuracy, 
reduced training time, and enhanced scalability across indus-
tries like healthcare, automotive, smart manufacturing, and 5G 
networking.

A Framework for Transfer Learning and Federated lear-
ning

As part of this section, we will discuss a novel framework 
that combines TL and FL to enhance prediction accuracy while 
maintaining privacy-preserving data processing. This approach 
leverages pre-trained models for knowledge transfer across dif-
ferent domains, improving the model's efficiency without need-
ing large datasets, and ensuring that sensitive data remains 
localized across institutions. The privacy-preserving aspect is 
achieved through FL, where data is not shared across clients, 
but models are trained collaboratively.

1.	 Figure.1 illustrates the five tasks involved in this pMod-
el Initialization using TL: A global machine learning model (base 
ML Model) is trained using publicly available datasets.

2.	 Model Distribution: The global model is then shared 
with each Site unit.

3.	 Local Model Training: Each site trains its local model 
using local data stored locally in its database.

4.	 Parameter Update: The locally trained models update 
their parameters, which are encrypted and sent back to the 
server to create an updated global model. No raw data (e.g., 
local data) is shared, ensuring privacy.

5.	 Personalized Model: TL is applied to fine-tune the glo-
bal model for each site, resulting in personalized settings based 
on their local data.

This combination of FL and TL allows the system to balance 
global model performance with individual customization, main-
taining privacy throughout the data sharing process.

TL Initialization

The process begins with the application of TL to initialize the 
models at each local node (e.g., healthcare institution or de-
vice). The key steps are:

Pretrained Model Setup: A global model, trained on a large 
dataset from a source task, such as a general health or diag-
nostic dataset, is distributed to each local node. This pretrained 
model already contains features that are likely generalizable 
across different health conditions.

The model's initial parameters, ​, are shared 
with all participating nodes.

Local Fine-Tuning: Each node fine-tunes the global pre-
trained model on its local dataset, which contains data specific 
to the node's medical practice or region (e.g., patient demo-
graphics or localized health issues). This step adjusts the model 
parameters to better suit the node’s specific task.

The objective is to minimize the local loss function Li with 
respect to the parameters θi​ (where i represents the node):

Where η is the learning rate and  Li is the gradient of the local 
loss function.

FL for Collaborative Model Training

Once TL has enabled local fine-tuning of the pretrained mod-
el, the system moves to the FL phase to collaboratively improve 
the model across all nodes without sharing raw data.

Local Model Training (On-Device Training): Each node con-
tinues training the locally fine-tuned model using its private da-
taset. No data is shared with other nodes or the central server. 
Instead, each node updates its local model's parameters based 
on its specific data, ensuring data privacy and security.

The goal is to minimize the local objective function at each 
node iii:

Where:

•	 Ni​ is the number of data points at node i,

•	  is the local loss function using local data 

•	 ( ).

Model Aggregation at Central Server: After a round of lo-
cal training, the updated model parameters (not the data) from 
each node are sent to the central server for aggregation. This 
is typically done using Federated Averaging (FedAvg), where 
the server computes the weighted average of the local models 
based on the size of their local datasets.

The global model parameters are updated as follows:

Where:

•	 K is the number of nodes,

•	 N is the total number of data points across all nodes,

•	  represents the model parameters from node i at 
iteration t.

Global Model Distribution: After aggregation, the updated 
global model is sent back to all local nodes for further fine-
tuning based on local data. This creates an iterative loop where 
the global model benefits from the knowledge learned at each 
node.

Iterative Training and Model Convergence

The above steps are repeated over multiple iterations:

•	 Local nodes continue to fine-tune their models on the 
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local datasets.

•	 The central server aggregates the updated models af-
ter each iteration.

•	 The global model gradually converges, learning from 
the diversity of local datasets across all nodes, ensuring that the 
final model generalizes well across different healthcare settings.

Final Model Deployment

After several rounds of aggregation and local fine-tuning, a 
robust global model is obtained. This model can then be de-
ployed across all participating nodes to provide a high-quality 
second health opinion for patients, benefiting from the collec-
tive knowledge learned from different healthcare institutions.

Advantages

The integration of FL and TL brings numerous advantages to 
industries like healthcare, retail, insurance and finance, where 
data privacy and efficiency are critical. By enabling collaborative 
learning across multiple institutions without sharing sensitive 
data, this approach fosters innovation while safeguarding pri-
vacy. Below are some of the key benefits:

•	 Data Privacy: No raw data is shared between nodes or 
with a central server. Only model updates are exchanged, en-
suring the protection of sensitive information.

•	 Knowledge Sharing: FL allows all nodes to benefit 
from diverse data across multiple healthcare providers, improv-
ing model generalization.

•	 Specialized Local Models: TL ensures models are tai-
lored to local data needs while still leveraging insights from a 
global model.

•	 Efficient Learning: TL accelerates model adaptation to 
new tasks, minimizing the need for large labeled datasets.

•	 Collaboration: Enables institutions to collaborate and 
train high-performing models without exposing sensitive data 
directly.

•	 Cost-Effectiveness: Reduces the requirement for ex-
tensive data collection efforts by allowing pre-trained models 
to be fine-tuned locally.

•	 Cyber Defence: Building nationwide or regional cyber-
defence models by sharing threats and malicious attempt pat-
terns across industries, without exposing the actual types and 
strategies of defence system design. 

By beginning with TL, which fine-tunes a pre-trained model 
on specific local datasets, and subsequently applying FL, organi-
zations across various industries can collaboratively enhance 
model performance while safeguarding sensitive data. 

This approach enables the development of high-performing 
models that capitalize on knowledge from diverse, distributed 
data sources, making it ideal for applications like fraud detec-
tion in finance, personalized recommendations in retail, or risk 
assessment in insurance. 

The process ensures that proprietary or private data remains 
secure, while still benefiting from the collective insights of all 
participating entities.

Discussion

The integration of FL and TL represents a significant ad-
vancement in the field of machine learning, particularly in 
areas where data privacy, scalability, and domain adaptation 
are crucial. These technologies, traditionally employed inde-
pendently, have been successfully merged in various domains 
such as healthcare, finance, retail, and manufacturing, where 
data sharing across organizations is restricted due to privacy or 
regulatory concerns. A significant body of research has demon-
strated the potential of combining these two approaches into 
Federated TL (FTL). For example, in healthcare, Federated TL 
(FTL) was used for decentralized brain tumour classification us-
ing MRI data [1], achieving a high accuracy of 98% while pre-
serving patient privacy. Similarly, authors in [2] developed the 
PrivateKT framework for privacy-preserving tasks like fraud de-
tection, with up to 84% of centralized model performance in 
constrained environments. In IoT, FTL was applied for intrusion 
detection, leading to an accuracy improvement of up to 5.55% 
and reduced training time by 36.11% [12]. And a blockchain-
enabled FTL was proposed for autonomous vehicular systems, 
improving latency, scalability, and security [13].

In conclusion, by starting with TL to fine-tune models based 
on localized data and proceeding to FL to aggregate knowledge 
without sharing data, this integrated approach is poised to 
transform industries by offering solutions that are both highly 
accurate and privacy-compliant across distributed environ-
ments.

Conclusion 

FL and TL offer significant benefits by enhancing model accu-
racy, preserving data privacy, and enabling collaboration across 
industries. The combination of these technologies has been 
shown to improve outcomes in sectors ranging from health-
care to finance, manufacturing, and networking. The ability to 
leverage pre-trained models while maintaining privacy makes 
this approach an ideal solution for modern AI applications in 
privacy-sensitive environments.

Author Statements

Authors’ Contributions

All authors read and approved the final manuscript. The cor-
responding author was responsible for the study's conception 
and design. Venkatesh Upadrista authored the first draft of the 
manuscript. All authors have read and approved the final ver-
sion of the manuscript.

Funding 

No Funding was received.

Conflict of Interests 

The authors have no relevant financial or non-financial inter-
ests to disclose. 

Ethical Approval 

This work does not involve the use of human subjects. 

Data Availability

No datasets were used and/or analyzed during the current 
study. rocess:



Submit your Manuscript | www.austinpublishinggroup.com Austin J Bus Adm Manage 8(3): id1077 (2024) - Page - 06

Austin Publishing Group

References
1.	 Albalawi E, Mahesh TR, Thakur A, Kumar VV, Gupta M, Khan SB, et 

al. Brain tumor classification using MRI images: a federated learn-
ing-based approach leveraging VGG16 architecture and transfer 
learning. BMC Medical Imaging. 2024; 24: 1-15.

2.	 Qi T, Wu F, Wu C, He L, Huang Y, Xie X. Differentially private knowl-
edge transfer for federated learning. Nature Communications. 
2023; 14: 3785. 

3.	 Guo W, Zhuang F, Zhang X, Tong Y, Dong J. A Comprehensive Sur-
vey of Federated Transfer Learning: Challenges, Methods, and Ap-
plications. Frontiers of Computer Science. 2024; 18: 186356.

4.	 Selvakanmani S, Devi GD, Rekha V, Jeyalakshmi J. Privacy-Preserv-
ing Breast Cancer Classification: A Federated Transfer Learning 
Approach. Journal of Imaging Informatics in Medicine. 2024; 37: 
1488-1504. 

5.	 Majeed U, Hassan SS, Hong CS. Cross-Silo Model-Based Secure 
Federated Transfer Learning for Flow-Based Traffic Classifica-
tion. IEEE International Conference on Information Networking 
(ICOIN). 2021: 588-593.

6.	 Xu B, Chen H, Jin S, Jiao Q. A Digital Currency System with Trans-
action Amount Privacy Protection. IEEE International Conference 
on Dependable, Autonomic and Secure Computing, International 
Conference on Pervasive Intelligence and Computing, Internation-
al Conference on Cloud and Big Data Computing, International 
Conference on Cyber Science and Technol. 2021: 535-540.

7.	 Michalak K, Korczak J. Graph Mining Approach to Suspicious 
Transaction Detection. Proceedings of the Federated Conference 
on Computer Science and Information Systems. 2011: 69–75.

8.	 Cassavia N, Caviglione L, Guarascio M, Liguori A, Manco G, Zup-
pelli M. A federated approach for detecting data hidden in icons 
of mobile applications delivered via web and multiple stores. So-
cial Network Analysis and Mining. 2023; 13: 1-15.

9.	 Wang E, Tayebi P, Song YT. Cloud-Based Digital Twins’ Storage in 
Emergency Healthcare. International Journal of Networked and 
Distributed Computing. 2023: 75–87.

10.	 Lloyd J. Infrastructure Leader’s Guide to Google Cloud: Lead Your 
Organization’s Google Cloud Adoption, Migration and Moderniza-
tion Journey, Apress Media LLC. 2023. 

11.	 Kanellopoulos P, Kyropoulou M, Voudouris A. Algorithmic Game 
Theory, 15th International Symposium, SAGT 2022, Colchester, 
UK, September 12–15, 2022, Proceedings. Lecture Notes in Com-
puter Science. 2022: 13584.

12.	 Otoum Y, Yadlapalli SK, Nayak A. FTLIoT: A Federated Transfer 
Learning Framework for Securing IoT. IEEE Global Communica-
tions Conference. 2022: 1146-1151.

13.	 Basha SM, Iyengar NSN, Ahmed ST, Caytiles RD. Inter-Locking De-
pendency Evaluation Schema based on Blockchain-Enabled Fed-
erated Transfer Learning for Autonomous Vehicular Systems. IEEE 
International Conference on Innovative Technology Convergence 
(CITC). 2021: 46-51.

14.	 Kopparapu K, Lin E, Breslin JG, Sudharsan B. TinyFedTL: Federated 
Transfer Learning on Ubiquitous Tiny IoT Devices. IEEE Interna-
tional Conference on Pervasive Computing and Communications 
Workshops (PerCom Workshops). 2022: 79-81.

15.	 Putra MAP, Rachmawati SM, Abisado M, Sampedro GA. HFTL: 
Hierarchical Federated Transfer Learning for Secure and Efficient 
Fault Classification in Additive Manufacturing. IEEE Access. 2023; 
11: 54795-54807. 

16.	 Li S, Cui Q, Li X, Liao T, Zhao X, Tao X. A Novel Federated Transfer 
Learning Framework Based on Collaborative GAN for Smart Man-
ufacturing. 2024 IEEE Wireless Communications and Networking 
Conference. 2024: 20-24.

17.	 Kholidy HA, Kamaludeen R. An Innovative Hashgraph-based Fed-
erated Learning Approach for Multi-Domain 5G Network Protec-
tion. IEEE Future Networks World Forum (FNWF). 2022: 139-146.

18.	 Sakib S, Fouda MM, Fadlullah ZM, Abualsaud K, Yaacoub E. Asyn-
chronous Federated Learning-based ECG Analysis for Arrhythmia 
Detection. IEEE International Mediterranean Conference on Com-
munications and Networking (MeditCom). 2021: 277-282.

19.	 Soni G, Verma S, Sharan A, Ahmad O. BioBERT-Based Model for 
COVID-Related Named Entity Recognition. Advances in IoT and 
Security with Computational Intelligence. 2023: 335-345. 

20.	 Soni G, Verma S, Sharan A, Ahmad O. BioBERT-Based Model for 
COVID-Related Named Entity Recognition. Published in a Springer 
compilation. 2023: 332-346. 

21.	 Soni G, Verma S, Sharan A, Ahmad O. BioBERT-Based Model for 
COVID-Related Named Entity Recognition. Springer compilation. 
2023: 332-346. 

22.	 Sujie X, Ruipeng H, Gaofeng C, Xiaoyan X, Ta L. EC-BERT: A BERT 
Language Model with Error Correction for Mandarin Chinese 
Speech Recognition. J Shanghai Jiao Tong Univ (Sci). 2024.

23.	 Baghersalimi S, Teijeiro T, Atienza D, Aminifar A. Personalized Re-
al-Time Federated Learning for Epileptic Seizure Detection. IEEE 
Journal of Biomedical and Health Informatics. 2022; 26: 2.

24.	 Brophy E, Vos MD, Boylan G, Ward T. Estimation of Continuous 
Blood Pressure from PPG via a Federated Learning Approach. Sen-
sors. 2021; 21: 6311. 

25.	 Yuan B, Ge S, Xing W. A Federated Learning Framework for Health-
care IoT devices. Distributed, Parallel, and Cluster Computing. 
2020.

26.	 Polamuri SR. Stroke detection in the brain using MRI and deep 
learning models. Multimedia Tools and Applications. 2024. 

27.	 Sarwat H, Alkhashab A, Song X, Jiang S, Jia J, Shull PB. Post-stroke 
hand gesture recognition via one-shot transfer learning using pro-
totypical networks. Journal of Neuro Engineering and Rehabilita-
tion. 2024: 21: 100.

28.	 Carino-Escobar RI, Franceschi-Jimenez LA, Carrillo-Mora P, Cantil-
lo-Negrete J. Subject-Specific Session-to-Session Transfer Learning 
Strategies for Increasing Brain-Computer Interface Performance 
during Upper Extremity Neurorehabilitation in Stroke. Journal of 
Medical and Biological Engineering. 2024; 44: 596-606. 

29.	 Reddy R. Generative AI in healthcare: an implementation science 
informed translational path on application, integration and gover-
nance. Implementation Science. 2024; 19: 27. 

30.	 AK, “MIMIC-III - Deep Reinforcement Learning,” Kaggle. 2022.

https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-024-01261-0
https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-024-01261-0
https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-024-01261-0
https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-024-01261-0
https://www.nature.com/articles/s41467-023-38794-x
https://www.nature.com/articles/s41467-023-38794-x
https://www.nature.com/articles/s41467-023-38794-x
https://link.springer.com/content/pdf/10.1007/s11704-024-40065-x.pdf
https://link.springer.com/content/pdf/10.1007/s11704-024-40065-x.pdf
https://link.springer.com/content/pdf/10.1007/s11704-024-40065-x.pdf
https://link.springer.com/article/10.1007/s10278-024-01035-8
https://link.springer.com/article/10.1007/s10278-024-01035-8
https://link.springer.com/article/10.1007/s10278-024-01035-8
https://link.springer.com/article/10.1007/s10278-024-01035-8
https://ieeexplore.ieee.org/abstract/document/9333905
https://ieeexplore.ieee.org/abstract/document/9333905
https://ieeexplore.ieee.org/abstract/document/9333905
https://ieeexplore.ieee.org/abstract/document/9333905
https://annals-csis.org/proceedings/2011/pliks/218.pdf
https://annals-csis.org/proceedings/2011/pliks/218.pdf
https://annals-csis.org/proceedings/2011/pliks/218.pdf
https://link.springer.com/article/10.1007/s13278-023-01121-9
https://link.springer.com/article/10.1007/s13278-023-01121-9
https://link.springer.com/article/10.1007/s13278-023-01121-9
https://link.springer.com/article/10.1007/s13278-023-01121-9
https://link.springer.com/article/10.1007/s44227-023-00011-y
https://link.springer.com/article/10.1007/s44227-023-00011-y
https://link.springer.com/article/10.1007/s44227-023-00011-y
https://dokumen.pub/algorithmic-game-theory-15th-international-symposium-sagt-2022-colchester-uk-september-1215-2022-proceedings-lecture-notes-in-computer-science-13584-1st-ed-2022-3031157133-9783031157134.html
https://dokumen.pub/algorithmic-game-theory-15th-international-symposium-sagt-2022-colchester-uk-september-1215-2022-proceedings-lecture-notes-in-computer-science-13584-1st-ed-2022-3031157133-9783031157134.html
https://dokumen.pub/algorithmic-game-theory-15th-international-symposium-sagt-2022-colchester-uk-september-1215-2022-proceedings-lecture-notes-in-computer-science-13584-1st-ed-2022-3031157133-9783031157134.html
https://dokumen.pub/algorithmic-game-theory-15th-international-symposium-sagt-2022-colchester-uk-september-1215-2022-proceedings-lecture-notes-in-computer-science-13584-1st-ed-2022-3031157133-9783031157134.html
https://www.researchgate.net/publication/367061905_FTLIoT_A_Federated_Transfer_Learning_Framework_for_Securing_IoT
https://www.researchgate.net/publication/367061905_FTLIoT_A_Federated_Transfer_Learning_Framework_for_Securing_IoT
https://www.researchgate.net/publication/367061905_FTLIoT_A_Federated_Transfer_Learning_Framework_for_Securing_IoT
https://www.researchgate.net/publication/358850152_Inter-Locking_Dependency_Evaluation_Schema_based_on_Block-chain_Enabled_Federated_Transfer_Learning_for_Autonomous_Vehicular_Systems
https://www.researchgate.net/publication/358850152_Inter-Locking_Dependency_Evaluation_Schema_based_on_Block-chain_Enabled_Federated_Transfer_Learning_for_Autonomous_Vehicular_Systems
https://www.researchgate.net/publication/358850152_Inter-Locking_Dependency_Evaluation_Schema_based_on_Block-chain_Enabled_Federated_Transfer_Learning_for_Autonomous_Vehicular_Systems
https://www.researchgate.net/publication/358850152_Inter-Locking_Dependency_Evaluation_Schema_based_on_Block-chain_Enabled_Federated_Transfer_Learning_for_Autonomous_Vehicular_Systems
https://www.researchgate.net/publication/358850152_Inter-Locking_Dependency_Evaluation_Schema_based_on_Block-chain_Enabled_Federated_Transfer_Learning_for_Autonomous_Vehicular_Systems
https://ieeexplore.ieee.org/document/9767250
https://ieeexplore.ieee.org/document/9767250
https://ieeexplore.ieee.org/document/9767250
https://ieeexplore.ieee.org/document/9767250
https://www.researchgate.net/publication/369100591_An_Innovative_Hashgraph-based_Federated_Learning_Approach_for_Multi_Domain_5G_Network_Protection
https://www.researchgate.net/publication/369100591_An_Innovative_Hashgraph-based_Federated_Learning_Approach_for_Multi_Domain_5G_Network_Protection
https://www.researchgate.net/publication/369100591_An_Innovative_Hashgraph-based_Federated_Learning_Approach_for_Multi_Domain_5G_Network_Protection
https://www.researchgate.net/publication/357286211_Asynchronous_Federated_Learning-based_ECG_Analysis_for_Arrhythmia_Detection
https://www.researchgate.net/publication/357286211_Asynchronous_Federated_Learning-based_ECG_Analysis_for_Arrhythmia_Detection
https://www.researchgate.net/publication/357286211_Asynchronous_Federated_Learning-based_ECG_Analysis_for_Arrhythmia_Detection
https://www.researchgate.net/publication/357286211_Asynchronous_Federated_Learning-based_ECG_Analysis_for_Arrhythmia_Detection
https://www.researchgate.net/publication/374132503_BioBERT-Based_Model_for_COVID-Related_Named_Entity_Recognition
https://www.researchgate.net/publication/374132503_BioBERT-Based_Model_for_COVID-Related_Named_Entity_Recognition
https://www.researchgate.net/publication/374132503_BioBERT-Based_Model_for_COVID-Related_Named_Entity_Recognition
https://ouci.dntb.gov.ua/en/works/7A0mEX29/
https://ouci.dntb.gov.ua/en/works/7A0mEX29/
https://ouci.dntb.gov.ua/en/works/7A0mEX29/
https://link.springer.com/article/10.1007/s12204-024-2725-0
https://link.springer.com/article/10.1007/s12204-024-2725-0
https://link.springer.com/article/10.1007/s12204-024-2725-0
https://ieeexplore.ieee.org/document/9479691
https://ieeexplore.ieee.org/document/9479691
https://ieeexplore.ieee.org/document/9479691
https://www.mdpi.com/1424-8220/21/18/6311
https://www.mdpi.com/1424-8220/21/18/6311
https://www.mdpi.com/1424-8220/21/18/6311
https://arxiv.org/abs/2005.05083
https://arxiv.org/abs/2005.05083
https://arxiv.org/abs/2005.05083
https://www.researchgate.net/topics
https://www.researchgate.net/topics
https://pubmed.ncbi.nlm.nih.gov/38867287/
https://pubmed.ncbi.nlm.nih.gov/38867287/
https://pubmed.ncbi.nlm.nih.gov/38867287/
https://pubmed.ncbi.nlm.nih.gov/38867287/
https://link.springer.com/article/10.1007/s40846-024-00891-7
https://link.springer.com/article/10.1007/s40846-024-00891-7
https://link.springer.com/article/10.1007/s40846-024-00891-7
https://link.springer.com/article/10.1007/s40846-024-00891-7
https://link.springer.com/article/10.1007/s40846-024-00891-7
https://implementationscience.biomedcentral.com/articles/10.1186/s13012-024-01357-9
https://implementationscience.biomedcentral.com/articles/10.1186/s13012-024-01357-9
https://implementationscience.biomedcentral.com/articles/10.1186/s13012-024-01357-9
https://www.kaggle.com/datasets/asjad99/mimiciii

	Abstract
	Introduction
	Literature Review 
	Literature Review 
	Summary
	A Framework for Transfer Learning and Federated learning
	TL Initialization 
	FL for Collaborative Model Training 
	Iterative Training and Model Convergence 
	Final Model Deployment 
	Advantages

	Discussion
	Conclusion
	Author Statements 
	References

