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Abstract

Multiple Myeloma (MM) is a plasma cell tumor characterized by multiple 
genetic lesions. Two main groups of abnormalities can be distinguished: Hyper 
diploid and hipodoploid, in which the chromosome number is mainly constituted 
by trisomies or monosomies, respectively. The advent of Fluorescence In Situ 
Hybridization (FISH) has permitted to identify genomic lesions that have been 
integrated into a prognostic score system that take in consideration also clinical 
parameters. This simple analysis can be part of the initial evaluation of the 
patient and can drive more accurately his treatment.
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abnormalities independently of proliferating cells [3,11]. With these 
methods, chromosomal aberrations are found in virtually all patients 
with MM. It is very important that plasmacells are purified from the 
original sample [2]. This is due to variable infiltration of plasmacells 
in the bone marrow and the dilution in the bone marrow aspirate 
that can lead to false negative results. There are various techniques 
to enrich tumour cells in MM. The most widely used method applies 
magnetic microbeads that recognize the cell surface antigen CD138 
expressed on both, normal as well as malignant plasma cells fish [12].
FISH permits the reliable identification of translocations as well as 
small deletions or gains. FISH became the most widely used technique 
for the analysis of chromosomal abnormalities in MM.

Fish
The indication in MM is to test for 13q14 and 17p deletions 

(13q-, 17p-), translocations of the IGH locus, in particular t(4;14)
(p16.3;q32) , t(11;14)(q13;q32) , t(14;16) (q32; q23) and abnormalities 
of chromosome 1p and 1q [2]. Most of these probes are available. 
For the detection of 13q loss, most laboratories apply probes mapping 
to chromosome band 13q14, although the critical region of 13q- is 
still poorly defined. For the detection of 17p-, it is general practice 
to apply probes containing the p53 gene. Translocations involving 
the immunoglobulin heavy-chain (IgH) locus can be detected by 
the use of DNA probes mapping to the constant (CH) and variable 
region of the IgH gene [13]. Reciprocal translocations are diagnosed 
by the colocalization of differentially labelled probes for IgH and the 
respective translocation partner (e.g. 11q13, 4p16, 16q23), ideally 
on both derivative chromosomes (double fusion). Cut-off levels 
for positive results are based on data obtained from bone marrow 
specimens of healthy volunteers. For dual fusion or break-apart 
probes, a cut-off level of 10% could be accepted. For single fusion 
results with dual fusion probes, a cut-off level of 20% can be good, 
although some laboratories apply a threshold of 10% for these probes, 
and it is important that each laboratory set proper cut off values [2].

13q deletion 
By FISH in several studies, -13/13q- is present in about 50% of 

cases representing the most frequent abnormality in MM [14]. Using 
conventional cytogenetics, the incidence of chromosome 13 losses 
among patients with informative karyotypes is comparable, resulting 
in an overall incidence of 10% to 20% as shown in large cytogenetic 

Introduction
In contrast to other haematological neoplasms such as the 

acute leukaemias, the systematic investigation of chromosomal 
aberrations in Multiple Myeloma (MM) by the use of conventional 
cytogenetics has been hampered by the low mitotic activity of tumour 
cells in this disease [1,2]. With the introduction of molecular-based 
cytogenetic techniques into the analysis of MM, and its precursor 
condition Monoclonal Gammopathy of Undetermined Significance 
(MGUS), considerable advances in the understanding of the biology 
of plasma cell tumours has been achieved. Using Fluorescence In 
Situ Hybridization (FISH), multiple and complex chromosomal 
abnormalities are detectable in virtually all patients with MM and 
most patients with MGUS with great prognostic importance [3].

Conventional cytogenetics 
Cytogenetic analysis in MM is informative in less than 30% of 

patients this is due to the mitotic activity of tumour cells that in 
MM as compared to other haematological diseases is generally very 
low. Karyotypes are typically complex and exhibit more than 10 
abnormalities in almost half of patients [4]. 

Numerical changes
The numerical changes are monosomies of chromosomes 

13, 14, 16, and 22 as well as trisomies of chromosomes 3, 5, 7, 9, 
11, 15, 19, and 21 [5]. Independent of the detection of specific 
chromosomal aberrations, chromosome banding analysis provides 
valuable prognostic information that can firstly be extracted from the 
presence or absence of abnormal metaphases, and secondly from the 
tumour cell ploidy in informative cases [6]. Patients with a normal 
karyotype enjoy a significantly longer survival than those that are 
cytogenetically abnormal [7]. Moreover, the classification of tumours 
with aberrant metaphases according to their chromosome number 
is also of prognostic relevance. In several series, hypodiploidy was 
associated with a significantly inferior outcome. However, as other 
adverse genetic features – such as monosomy 13/13q deletion, t(4;14), 
and t(14;16) – are predominantly present in hypodiploid tumours, it 
remains controversial whether or not hypodiploidy is an independent 
prognostic marker [8-10]. While numerical changes can be diagnosed 
easily, small interstitial deletions are usually missed. Fluorescence 
In Situ Hybridization (FISH), allow the detection of genetic 
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series. In patients with t(4;14)(p16.3;q32) or t(14;16)(q32;q23), 
the incidence of -13/13q- is approximately 90%. By conventional 
cytogenetics -13/13q- is associated with significantly lower response 
rates, shorter Event-Free Survival (EFS), and inferior Overall Survival 
(OS) in MM. This is true for patients after conventional chemotherapy 
as well as for patients treated with High-Dose Chemotherapy (HD-
CTX) and Autologous Stem Cell Transplantation (ASCT) [15]. 
-13/13q- by karyotyping predict a more unfavourable prognosis than 
the detection of the same abnormality by FISH. This is most likely 
due to a combination of negative prognostic markers reflected by this 
finding (higher rate of proliferating cells) [16]. Moreover, significantly 
more 13q-deleted patients are identified by FISH as compared to 
conventional cytogenetics (40–50% vs. 15–20%). 

17p deletion 
Inactivation of the p53 tumour suppressor gene by monoallelic 

deletion or mutation is associated with disease progression in many 
human malignancies. In most FISH series, the incidence of p53 
deletion among newly diagnosed patients was in the range of 5% to 
10% [17,18]. However, functional loss of the gene is present in up 
to 40% of patients with advanced MM and in more than 60% of 
human myeloma cell lines, pointing to this abnormality as a marker 
of tumour progression [19]. Independent of the mode of treatment 
(conventional chemotherapy or HD-CTX), deletion of the p53 gene 
locus identified by FISH is a predictor of shorter survival [20]. 

Chromosome 1q
In cytogenetic studies, 1q abnormalities were associated with 

advanced disease and tumour progression, as well as with shorter 
event-free survival. The gene implicated seems amplificated and is 
the cell cycle regulator gene CKS1B at chromosome band 1q21 as a 
predictor of a particularly unfavourable prognosis [21-23].

IgH translocations 
IgH translocations are equally frequent in, MGUS and MM (~40–

60%), which strongly suggests that primary IgH rearrangements 
represent early pathogenetic events [24]. The overall rate of 14q32 
translocations, however, significantly increases with disease 
progression and reaches up to 90% in advanced tumours and 
Human Myeloma Cell Lines (HMCL), most likely reflecting a rising 
number of secondary IgH translocations which seem to be virtually 
absent in MGUS and smoldering MM. Typically, there are five main 
translocations involving 11q13 (CCND1), 6p21 (CCND3), 16q23 
(MAF), 20q12 (MAFB), and 4p16 (FGFR3 and MMSET) [25].

t(11;14)(q13;q32) 
Tumours carrying the t(11;14)(q13;q32) can be identified either 

by chromosome banding analysis, FISH, or gene expression analysis.
Using FISH, the rearrangement can be identified in about 15–20% 
of patients with MM and 15–30% of cases with MGUS [26,27]. The 
presence of t(11;14) has been correlated with a lymphoplasmacytic, 
mature morphology of plasma cells, CD20 expression, and the oligo-/
asecretory MM subtype. There was no impact of t(11;14) on survival 
of patients treated with conventional chemotherapy. The t(11;14)
(q13;q32) is identical to that observed in mantle-cell lymphomas. 
The breakpoints involve the IGH gene at 14q32, and the CCND1 
gene at 11q13, encoding the cyclin D1 protein. Although the cyclin 
D1 has been involved in the activation of proliferation, the t(11;14) 
myelomas are characterized by a low proliferative index and a 

frequent morphology of small mature plasma cells. Clinically, this 
type of myeloma is not remarkable. Although preliminary reports did 
show a better survival, more recent and larger studies did not confirm 
this prognostic impact [28].

t(4;14)(p16.3;q32) 
The karyotypically cryptic t(4;14)(p16.3;q32) is detectable in 

approximately 15–20% of primary tumour specimens by FISH and 
leads to the dysregulation of two oncogenes, MMSET on der(4) and 
FGFR3 on der(14) [21,29,30]. Of note, in about 20% of cases with 
t(4;14), FGFR3 on der(14) is lost or not expressed. The translocation 
was found to be more prevalent among tumours with an IgA isotype 
as well as in patients with aggressive clinical features. Independently 
from the mode of treatment, t(4;14) is associated with an unfavourable 
clinical course [31]. 

t(14;16)(q32;q23) 
Like t(4;14), t(14;16)(q32;q23) is karyotypically silent but can 

reliably be identified by FISH. With an incidence of 2–10%, t(14;16) 
is comparatively rare. t(14;16) results in the upregulation of the basic 
leucine zipper (bZIP) transcription factor c-maf. There is only scarce 
data about the prognostic impact of this IgH rearrangement, but it 
seems associated with poor prognosis [32,33].

Conclusion 
The analysis of genomic rearrangements in MGUS and MM by 

the use of cytogenetics and molecular cytogenetics has ameliorated 
our understanding of clonal plasma cell disorders. The evaluation of a 
comprehensive panel of chromosomal imbalances and translocations 
is currently important within clinical management. 
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