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Introduction
Non-coding RNAs transcribed from opposite strand of the 

protein coding sense strand are collectively termed as antisense RNAs 
(asRNAs). Effective in binding to both DNA and RNA, asRNAs are 
reported to have a putative role in transcriptional interference and 
mRNA instability [1]. Also known as Natural Antisense Transcripts 
(NATs), these are classified under long non-coding RNAs (lncRNAs) 
and found to occur with 50-70% of all protein coding genes [2]. 
Despite most of lncRNAs are confined to the nucleus, a relevant 
and critical observation was that about 73% of the transcribed 
antisense RNAs were localized and stable in the cytoplasm as other 
coding mRNAs [3]. This intrigues whether these antisense RNAs are 
directed for mRNA interaction or if they are being decoyed to avert 
a nuclear trivial. Antisense RNAs have diversified function of gene 
silencing and activation ascertaining its importance in tumorigenesis. 
An antisense to a tumor suppressor or oncogene will be of special 
interest bearing a cis- effect on parental gene or trans- effect on 
the downstream target genes. Interestingly, most of asRNAs are 
transcribed with a positive correlation to sense partners as observed 
in multiple tumor tissues and cancer cell lines [4]. However, whether 
the deregulation of antisense RNAs is a more consequence of sense 
transcript regulation is debatable. Understanding different class of 
antisense RNAs is persuasive in revealing its mode of transcriptional 
regulation in relevance to sense mRNAs. Typical classification 
of antisense transcripts is (i) Head to head: divergently oriented 
transcripts with overlapping 5’ ends of both sense and antisense (ii) 
tail to tail: Convergent transcribed sense and antisense pairs with 
their 3’ ends overlapping and (iii) Internal: with a fully overlapping 
sense transcript [5,6]. In addition to these, based on positional effect 
antisense transcripts are divided into cis and trans that precisely 
define their functional characteristics.

Functional Role in Cancer
The cis effects of asRNAs (at the region of its transcription) are 

more frequently encountered than trans (affecting distantly located 
DNA/transcripts). The cis-acting asRNAs organize the regulatory 
event like chromatin remodeling of parental or proximal genes, 
whereas the trans-function of asRNAs include enhancing or repressing 
the distally located genes. The major functional roles of antisense 
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RNAs are chromatin remodeling, RNA masking, RNAi (RNA 
interference) and TI (transcriptional interference) [7]. Chromatin 
reprogramming by as RNATARID (TCF21 antisense RNA inducing 
demethylation) has been reported to aid in demethylation elucidating 
a novel epigenetic modulation. TARID physically interacts with 
TCF21 promoter and localizes GADD45A (growth arrest and DNA-
damage inducible, alpha) which in turn recruits TDG (thymine-
DNA glycosylase) for TET (Ten Eleven Translocation) mediated 
conversion of 5-methylcytosine to 5-hydroxymethylation and this 
demethylation eventually increases the expression of the tumor 
suppressor TCF21 [8]. Antisense RNAs might form sense/antisense 
(SAS) duplex masking the sense transcript from processes like splicing, 
localization and stabilization by deliberately preventing protein-RNA 
interaction. EMT (Epithelial mesenchymal transition) induction 
by Zeb2 over expression is an example of RNA masking exerted 
by as RNA of Zeb2 which prevents the splicing of 5’UTR of Zeb2 
retaining the intra-ribosomal entry site for an efficient expression. 
Yet another interesting functional mechanism of asRNAs is linked 
to RNAi, where the sense-antisense transcript pair is thought to be 
processed by DICER resulting in an endo-siRNA. The guide RNA 
of the endo-siRNA targets the mRNA resulting in RISC mediated 
translational repression. However, RNAi mechanism involving 
NATs is frequently argued upon [9]. Transcriptional interference is 
a retarding effect exerted by the transcriptional complex initiated by 
antisense promoter over the transcriptional unit of the protein coding 
strand, besides is a rare event to occur as most of the antisense are 
co-expressed with sense partner. The classification of asRNAs based 
on functional mechanism and identifying the binding partners will 
facilitate their clinical application (Figure 1).

Use of Antisense RNAs in Cancer 
Therapeutics

The huge class of asRNAs in transcriptional landscape of tumors 
not only indicates their significant role in carcinogenesis but also 
propose potential therapeutic targets. At present, the exact functional 
mechanism of only a very few antisense lncRNAs has been understood, 
however, certain manipulative asRNAs assure high scope of cancer 
therapeutics. Two basic modalities of using asRNAs in therapy are 
by increasing or stabilizing bioavailability of the under expressed 
antisense and the other is by knocking down oncogenic antisense 
RNAs. The less expressed antisense RNAs are largely found to be 
hyper methylated and methylation inhibitor drugs would increase 
sustained expression of these antisense RNAs [10]. Whereas the 
highly expressed antisenses RNAs repress neighboring gene or sense 
transcript expression, targeting those asRNAs that repress tumor 
suppressors like ANRIL repressing INK4A, INK4B and ARF can be a 
proposed prostate cancer treatment [11]. Exploiting asRNAs known 
to activate gene expression is also a captivating strategy. The intriguing 
finding of Uchl1 antisense playing a crucial role in promoting the 
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translational efficiency of its sense partner leads to use of SINEUPs 
as a potent RNA based therapeutics [12]. The functional activity of 
SINEUPs depends on the combination of two RNA elements; a DNA 
binding domain for sequence specificity and an effector domain 
(inverted SINEB2 element) conferring the translational efficacy. 
Systematically designed, functionally consistent artificial SINEUPs 
may also increase protein levels in case of haploinsufficient tumor 
suppressors [13]. Use of antagoNATs has been yet another successful 
paradigm of upregulating protein expression influenced by an 
antisense. BDNF-AS was targeted by an antagoNAT with modified 
phosphorothioate-modified backbones and three locked nucleic 
acid (LNA) that in turn increased BDNF expression leading to an 
improved neuronal cell survival [14]. Despite appositeness of these 
commonly used strategies for knocking down asRNAs, there are few 
limitations to consider. For instance, when CRISPR/Cas9 was used 
to target lncRNAs about 80% knockdown was achieved, but most of 
asRNAs are bidirectional with shared promoter/enhancer elements 
and thus targeting an antisense will have an equal probability of 
its sense knockdown [15]. On the other hand, by using RNAi like 
siRNA/shRNA or ASO (Antisense Oligonucleotides) which is short 
complimenting DNA oligonucleotides can precisely target asRNAs 
however with a low but attainable efficiency. Several known asRNAs 
are projected as diagnostic and prognostic markers. HOTAIR is the 
most commonly upregulated asRNA with diagnostic importance in 
esophageal, colorectal, hepatocellular and cervical cancer and can 
strongly indicate overall survival in colorectal cancer patients [16]. 
ANRASSF1 and ANRIL were found to be significantly detectable 

in breast tumors with the later showed up to be a poor prognostic 
marker of cervical cancer [17,18]. With molecular mechanisms 
of limited asRNAs being revealed, a defined strategic approach of 
using these into clinics is at a premature stage. Nevertheless, the 
global-boom of non-coding RNA profiling with enriched reports 
on antisense RNAs in various tumors has a futuristic implication in 
diagnosis and therapy.
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