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Abstract

Objective: Bone suppression of chest radiograph holds great promise 
to improve the localization accuracy in Image-Guided Radiation Therapy 
(IGRT). However, data scarcity has long been considered as the prime culprit 
of developing Convolutional Neural Networks (CNNs) models for the task of 
bone suppression. In this study, we explored the effectiveness of various data 
augmentation techniques for the task of bone suppression.

Methods: In this study, chest radiograph and bone-free chest radiograph 
are derived from 59 high-resolution CT scans. Two CNN models (U-Net 
and Generative Adversarial Network (GAN)) were adapted to explore the 
effectiveness of various data augmentation techniques for bone signal 
suppression in the chest radiograph. Lung radiograph and bone-free radiograph 
were used as the input and target label, respectively. Impacts of six typical 
data augmentation techniques (flip, cropping, noise injection, rotation, shift and 
zoom) on model performance were investigated. A series of statistical evaluating 
metrics, including Peak Signal-To-Noise Ratio (PSNR), Structural Similarity 
(SSIM) and Mean Absolute Error (MAR), were deployed to comprehensively 
assess the prediction performance of the two networks under the six data 
augmentation strategies. Quantitative comparative results showed that different 
data augmentation techniques exhibited a varying degree of influence on the 
performance of CNN models in the task of CR bone signal suppression. 

Results: For the U-Net model, flips, rotation (10 to 20 degrees), all the 
shifts, and zoom (1/8) resulted in improved model prediction accuracy. By 
contrast, other studied augmentation techniques showed adverse impacts on 
the model performance. For the GAN model, it was found to be more sensitive 
to the studied augmentation techniques than the U-Net. Vertical flip was the only 
augmentation method that yielded enhanced model performance.

Conclusion: In this study, we found that different data augmentation 
techniques resulted in a varying degree of impacts on the prediction performance 
of U-Net and GAN models in the task of bone suppression in CR. However, 
it remains challenging to determine the optimal parameter settings for each 
augmentation technique. In the future, a more comprehensive evaluation is still 
warranted to evaluate the effectiveness of different augmentation techniques in 
task-specific image synthesis.
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Introduction
Lung cancer is one of the second commonly occurring cancer 

worldwide, contributing about 11.4% of the new cancer cases [1]. One 
of the standard treatments for lung cancer is radiation therapy [2,3]. 
With the help of On-Board Imaging (OBI) systems, Image-Guided 
Radiation Therapy (IGRT) has been able to deliver a more accurate 
dose to the tumor region and reduce the radiation toxicity to the 
normal tissues [4,5]. The 2D Chest Radiograph (CR) generated by the 
OBI system is commonly used to determine the patient position and 
decrease the patient position variations during the IGRT course of 
lung cancer [6]. However, the bony structure in CR often obscures 
the localization of the target or landmarks, causing a maximum 
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error of 22mm during the IGRT of lung cancer [7]. To improve the 
localization accuracy of IGRT, bone suppression in CR is regarded as 
a promising solution [8].

Various efforts have been made for bone suppression in CR. 
Dual-energy (DE) radiographic imaging attempts to leverage the 
difference in attenuation coefficients between bones and soft tissues 
for obtaining the separation of bone and soft tissue images using 
two levels of X-ray exposures [9]. Despite the increased diagnostic 
sensitivity, its clinical application in radiation oncology is still largely 
restricted. More recently, multiple deep learning techniques have 
been extensively studied, a variety of CNNs have achieved remarkable 
progress and have been successfully applied to the task of bone signal 
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suppression, including multiple massive-training artificial neural 
networks [10], filter learning [11], massive training artificial neural 
network [12], cascade of multi-scale convolutional neural networks 
[13], frequency-specific deep neural network convolution [14], to 
name a few. These methods suppress bone structures by regression 
prediction, in which the bone-free Digital Radiograph (DR) is used 
as training ground truth [10-16]. Although such bone suppression 
methods provide the radiologists with an unobstructed view of 
the lung tissue, streamlining diagnostic sensitivity of CR without 
incurring additional radiation dose to patients, the prediction 
accuracy of the deep learning models still heavily relies on the 
availability of large-scale high-quality data [17,18]. Undoubtedly, 
this poses a practical challenge in real-world scenario, since massive 
expenses and manual efforts are required to obtain enormous amount 
of datasets in demand, especially in the context of sparse availability 
of the desired label of interest [19].

Confronted with this roadblock in building deep learning 
models, data augmentation, which is the process of applying one or 
more geometric deformations for inflating the size of training dataset 
artificially [20,21], has been widely adopted. As deep learning models 
treat a geometrically transformed image as a meaningful image, 
CNN models can be trained using the deformed dataset to generate 
more “unseen” data. As such, data augmentation plays a vital role 
in enhancing the performance of classification and segmentation 
since it increases the data variability [22,23] and does not affect the 
semantic validity of the original dataset [24]. The effectiveness of 
data augmentation has been tested in many natural image datasets, 
including MNIST handwritten digit recognition, CIFAR-10/100, 
ImageNet, tiny-imagenet-200, SVHN (street view house numbers), 
Caltech-101/256, MIT places, MIT-Adobe 5K dataset, Pascal VOC, 
and Stanford Cars [19]. Hussain et al. compared training model 
performance utilizing different augmentation strategies, and their 
results suggested that both discriminative and generative performance 
were drastically affected [25]. Several data augmentation approaches, 
such as flips and rotations, have been widely studied in the literatures 
involving raw medical images. Nevertheless, the impact of various 
data augmentation techniques in the case of medical synthesis 
problems, particularly in the aspect of bone signal suppression in CR, 
remains to be investigated.

In this study, we investigated the impacts of six typical data 
augmentation techniques (flip, cropping, noise injection, rotation, 
shift, and zoom), each with varying intensities of augmentation, 
for the task of bone signal suppression in CR on two popular deep 
learning architectures, U-Net and GAN. A series of statistical 
evaluating metrics, including Peak Signal-To-Noise Ratio (PSNR), 
Structural Similarity (SSIM) and Mean Absolute Error (MAR), were 
deployed to comprehensively evaluate the prediction performance 
of the deep learning models under different data augmentation 
strategies. Our overarching purpose was to provide insights into the 
optimal adoption of data augmentation initiatives in synthesized 
bone-free CR using two typical deep learning architectures, U-Net 
and GAN. 

Materials and Methods
Dataset and image processing

A publicly available dataset, RIDER Lung CT dataset, from The 
Cancer Imaging Archive (TCIA) [26,27] was used as the raw data to 
derive the lung Digital Radiograph (DR) images and bone-free lung 
DR image, which were used as the input and target, respectively. This 
dataset contains 59 high-resolution CT scans of the chest from non-
small cell lung cancer patients. Each CT slice was constructed into a 
512 × 512 matrix with 0.576×0.576 mm2 pixel spacing and 1.25mm 
slice spacing.

The image processing workflow for bone-free DR images 
derivation is illustrated in Figure 1. The lung was first automatically 
segmented in CT using the U-net (R231) model [20,28], which was 
pretrained on a widely diverse lung CT scans. Bony structures were 
segmented by thresholding of +300 HU. The bone and lung segments 
were subsequently applied to the high-resolution CT to generate the 
bone CT and lung CT images. The digital radiographs were simulated 
from 3D volumetric CT images using the Insight Segmentation and 
Registration Toolkit (ITK) package in the Python environment. The 
ITK is an open-source SDK for image analysis and image processing 
and is widely used in medical image processing. To focus our analysis 
on the lung region, a lung mask was built on the lung region and 
applied on CRs for segmenting the bone DR and bone-free DR. The 
processed DRs were multiplied to generate the lung DR images. 
47 cases of the generated pairs were used for downstream model 

Figure 1:  Flowchart of deriving the CR images and bone-free CR images.



Austin J Cancer Clin Res 8(2): id1095 (2021)  - Page - 03

Cai J Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

training, and 12 cases were used for model testing.

Deep CNNs
Two commonly studied convolutional neural network 

architectures, U-Net [29], and Generative Adversarial Network 
(GAN) [30] were utilized for bone suppression of lung DR images in 
this study. The U-Net model used an encoding-decoding structure, 
as shown in Figure 2. Four skip attentions were used for original 
shape recovery. The convolution captures the hierarchical texture 
features of the input. To extract global texture features, four 2×2 
pooling convolutions were used to increase the size of the receptive 
field. Accordingly, four transpose convolutions were used to recover 
to the original image size. Each convolution has a size of 3×3, and is 
followed by a batch normalization, and a Parametric Rectified Linear 
Unit (PReLU). At the last layer, a Sigmoid function sums up the 
results of the previous layers. The predicted values are in the range of 
(0,1). Binary Cross Entropy (BCE) loss was used as the loss function 
to minimize the difference between the ground truth and the output 
of the network.

The GAN model is composed of a generator and a discriminator. 
The two networks were trained simultaneously by an adversarial 
process. The generator used a fully convolutional architecture. 16 
layers of convolutions were used to learn to create bone-free DR 
images. The discriminator has 5 layers and learns to distinguish 
between real and fake bone-free DR images. The maximum width of 
the generator and discriminator are 128 and 512, respectively. The 
output of the generator was concatenated with the original lung DR 
images to be discriminated by the discriminator. The generator used 
BCE as the loss function, while the discriminator used Mean Square 
Error (MSE) as the loss function. The overall loss function of CCNN 
was:

L = LMSE + γLBCE   (1)

γ was the weighing factor of the second network loss and was 
empirically set to 5.

The proposed method learns the optimal parameter values by 

minimizing the loss function between the bone-free lung DR and 
the output of the network. Both models were updated using error 
backpropagation with an Adaptive Moment Estimation Optimizer 
(ADAM). The number of epochs was 400, and each epoch includes 
five iterations. We implemented our network using the Pytorch 1.1 
framework. All the preprocessing steps were coded in python. All 
the experiments were performed using a workstation with CPU Intel 
Core i7-8700 @ 3.2GHz, GPU NVIDIA GTX 2080 TI with 11GB 
memory, and 32GB of RAM.

Data augmentation
During model training, we applied six augmentation techniques 

to generate six categories of new training images. In each training 
epoch, either the generated new image or the original image was used 
for training. The augmentation techniques are described as follows: 

Flip: Horizontal flip, vertical flip, or the combination of both was 
applied to each of the training images. Conventionally, a horizontal 
flip is more common used, compared to the vertical flip. This 
augmentation is one of the easiest approaches to implement and has 
been proven to be useful for classification tasks on datasets CIRAR-10 
and ImageNet. 

Cropping: Cropping of the image is regarded as a practical 
augmentation technique for data with changing height and width 
dimensions. In the process of cropping, γ percent of the original 
image was cropped and zoomed in relation to the original image size, 
where γ is 7/8, 6/8, and 5/8. 

Noise injection: In the classification dataset, adding noise helps 
the CNN model to learn more robust features [31]. In this study, 
an array, N, was generated. The element of N was a sample from a 
Gaussian distribution with µ=0 and σ as an integer in the range of 
(0.1, 0.5). For each image I, the noise-injected image I’ = I + N was 
obtained.

Rotation: Rotation augmentation was done by rotating the image 
right or left on an axis between certain degrees. The slight rotation 
was a desirable augmentation in the classification problem. We 

Figure 2: Architecture of the convolutional neural networks.



Austin J Cancer Clin Res 8(2): id1095 (2021)  - Page - 04

Cai J Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

randomly rotated the images between (-θ, θ), where θ is 5, 10, 15, 20, 
25, 30 degrees. 

Shift: Shifting the image can be a useful geometry augmentation 
to avoid positional bias in the dataset. In this study, the image 
was shifted randomly in the left, right, up, or down direction. The 
remaining pixels were filled with 0. Here, we shifted the image along 
both axes for β pixels, where β is 5, 10, 15, and 20. 

Zoom: Zooming the image can be adopted as a processing step 
for the image object with different sizes. Here, we reduced the image 
size to α percent of the original image size, where α is 1/8, 2/8, 3/8, 

4/8, 5/8, and 6/8 in different experiments. The background regions 
were filled with 0.

Evaluation
In addition to the commonly used image evaluation metrics, 

such as Peak Signal to Noise Ratio (PSNR) and Structural Similarity 
(SSIM), we adopted the Mean Absolute Error (MAE) to quantitatively 
assess the prediction performance of the proposed neural network 
in comparison to our ground truth, bone-free lung DR, in different 
augmentation settings (Figure 3). 

PSNR is a quality metric assessing image quality between the 
original and compressed, or augmented images to describe how its 
fidelity is affected. The PSNR can be computed using the following 
equation: 

1020 log MAXPSNR
MSE

 = ⋅  
 

  (2)

where MAX is the maximum fluctuation in the input image data type. 
MAX is 1 in this study, as our input images are the double-precision 
floating-point data type. MSE is the mean squared error, defined as:

2
1 2,

[ ( , ) ( , )]

*
M N

I m n I m n
MSE

M N

−
=
∑    (3)

where I1 and I2 are the two images. M and N are the dimension sizes 
along the x-axis and the y-axis. 

The SSIM contains three terms as the comparisons of three 
measurements: luminance term, contrast term, and the structural 
term [32]. The overall SSIM is a multiplicative combination of these 
terms:
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where μI, μI
*, σI, σI

* and σII
* are the local means, standard deviations, 

and cross-variance for image y and p. C1=(k1 L)2, C2=(k2L)2 are the two 
variables that stabilize the division with weak denomination.

MAE measures the matching error between the original and 
augmented images, calculating as:
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To compute the arithmetic average of the absolute errors. In this 
study, yi is the augmented image and xi is the reference.

Results
The accuracy of the proposed CNN models (U-Net and GAN) 

is presented in Figure 5. The baseline models of U-Net and GAN 
achieved MAE = 0.0340 ± 0.0095 and 0.0357 ± 0.0050; PSNR = 
27.3681 ± 1.9674 and 27.0374 ± 1.0381; SSIM = 0.9408 ± 0.0121 
and 0.01502, respectively. To further evaluate the performance, a 
representative case is visualized in Figure 4. The bone-free image 
synthesized by U-Net did not recover small vessels in the periphery 
region. In comparison, GAN failed to recover most of the detailed 
information in the periphery region and predicted most pixels as 
white. The U-Net model outperformed GAN in 24 out of 27 data 
augmentation strategies, while only in vertical flip, zoom (5/8), zoom 
(4/8) scenarios GAN has better performance. 

For the U-Net model, the performance increased with different 
flips, rotation from 10 to 20 degrees, all the shift, and zoom 
(1/8) augmentations. With both vertical and horizontal flip, the 

Figure 3: Examples of different data augmentation strategies.
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performance increased by -8.0069% (MAE), 3.3454% (PSNR), and 
0.9878% (SSIM). Rotation with 10-degree lead to -10.8744% (MAE), 
4.6000% (PSNR), and 1.2339% (SSIM) performance increase, which 
is the largest increment among all degrees of rotations tested. 

Zoom augmentation to 1/8 of the original image also improved the 
performance by -13.9694% (MAE), 4.0462% (PSNR), and 0.8736% 
(SSIM).

The GAN models demonstrated a larger variation in performance 
(Variance = 0.0102, 28.3833, and 0.0420 for SAM, PSNR, and SSIM, 
respectively) with different data augmentation techniques in training, 
compared to U-Net (variance = 0, 1.9595 and 0.0003 for SAM, 
PSNR, and SSIM, respectively). With a vertical flip, the performance 
increased by -15.7407% (MAE), 4.7206% (PSNR), and 1.8480% 
(SSIM). 

The correlation between different evaluations metrics was also 
evaluated using the Spearman correlation in this study (Figure 6). 
For the U-Net model, the evaluation metrics MAE, PSRN, and SSIM 

Input PredictionGround Truth

Figure 4: Illustration of the synthesized bone suppression image.

Figure 5: Performance of different data augmentation strategies using the U-Net model (a) and GAN model (b).



Austin J Cancer Clin Res 8(2): id1095 (2021)  - Page - 06

Cai J Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

had a high absolute correlation with each other (r=0.96-0.98). For 
the GAN model, MAE and SSIM are highly correlated (r= -0.95), 
followed by MAE and PSNR (r= -0.89) and SSIM and PSNR (r= 0.83).

Discussion 
Our quantitative results demonstrated that different data 

augmentation techniques resulted in a varying degree of impact 
on prediction performance of both U-Net and GAN deep learning 
models in the task of chest X-ray bone signal suppression. For the 
U-Net model, flips, rotation from 10 to 20 degrees, all the shift, and 
zoom (1/8) enhanced the accuracy of the synthesized image, while 
the rest of the studied augmentation techniques incurred adverse 
consequences. Compared to the U-Net model, the GAN model was 
found to be more sensitive to the studied augmentation techniques, 
among which only the vertical flip resulted in a positive effect on 
model predictability.

For the image synthesis task of bone signal suppression, some 
augmentation methods capture medical image statistics more 
effectively than others. For example, flips, rotation, and shift were the 
desirable augmentation techniques for the training of U-Net. We also 
revealed that a combination of all optimal augmentation techniques 
did not improve the model performance. Other augmentation 
techniques, like crop and noise injection, generally decreased the 
performance of the CNN model. According to a recent publication 
examining impact of noise injection on model performance, adding 
noise can help the neural network learn more robust features for the 
classification task [31]. Nevertheless, results from this study found 
that, in image synthesis task of bone signal suppression, adding 
noise deteriorated the prediction accuracy on the testing group. Such 
discrepancy could be intuitively elucidated, in part, that the Gaussian 
noises seldom appear on the real DR images. This augmentation 
compromises the prediction ability on the real lung DR images. This 
effect also showed the special of medical images is different from 
the natural images. Special attention should be paid to augment the 
medical image and understand types of the underlying variant. 

Furthermore, we observed that the studied augmentation 
strategies led to a varying extent of impacts on the two assessed 
CNN models. For example, flips, rotation, and shift were found to be 
desirable augmentation techniques for training U-Net models, while 
vertical flip was the only augmentation approach that reinforced 
the performance of GAN models. This could partly be attributed 
to the fact that GAN model is often more complex, involving more 

Figure 6: Correlation of different evaluation metrics.

parameters and consisting of two networks, as in contrast to the 
U-Net model. These features of GAN models render difficulties for 
modelers to fine-tune the modeling parameters in order to achieve 
optimal model performance [33]. For the training of CNN models, 
it is important to determine the desirable augmentation techniques.

In spite of the wide application scope of data augmentations in 
image synthesis, a thorough evaluation of these techniques in relation 
to CNN model performance has not yet been discussed. In this study, 
we explored the effectiveness of different geometry augmentation 
techniques and attempted to identify desirable augmentation 
techniques. However, it remains challenging to determine the 
optimal parameter settings for each augmentation technique. In the 
future, a more comprehensive evaluation is still warranted to evaluate 
the effectiveness of different augmentation techniques in task-specific 
image synthesis.

Conclusions 
In this study, we found that different data augmentation 

techniques resulted in a varying degree of impacts on prediction 
performance of U-Net and GAN models in the task of CR bone signal 
suppression. For the U-Net model, flips, rotation (10 to 20 degrees), 
all the shift, and zoom (1/8) resulted in improved model prediction 
accuracy. By contrast, other studied augmentation techniques 
showed adverse impacts on the model performance. For the GAN 
model, it was found to be more sensitive to the studied augmentation 
techniques than the U-Net. Vertical flip was the only augmentation 
method that yielded enhanced model performance. However, it 
remains challenging to determine the optimal parameter settings for 
each augmentation technique. In the future, a more comprehensive 
evaluation is still warranted to evaluate the effectiveness of different 
augmentation techniques in task-specific image synthesis.
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