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Abstract

Secreted Protein Acidic and Rich in Cysteine (SPARC) is a matricellular 
glycoproteins that is implicated in myriad physiological and pathological 
conditions characterized by extensive remodeling and plasticity. The role of 
SPARC in cancer is being increasingly appreciated as it plays multi-faceted 
contextual roles depending on the cancer type, cell of origin and the surrounding 
milieu. Herein, we will review the current knowledge of the role of SPARC in 
the multistep cascades of carcinogenesis, cancer progression and metastasis. 
We will shine the light on SPARC expression in human tumors, the preclinical 
models and its prognostic and therapeutic potential.
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inhibiting tumor cell adhesion to pulmonary endothelial cells and 
early metastatic colonization.

The differential roles of SPARC in the early phases of urothelial 
transformation that are not clinically encountered, were studied in 
a chemical carcinogenesis model providing a tobacco metabolite fed 
to SP-/- and SP+/+ mice [18]. This model recapitulated human bladder 
cancer that develops after prolonged exposure to chemical carcinogens 
[18]. The ensuing urothelial pathology after BBN-exposure was 
associated with progressive generation of Reactive Oxygen Species 
(ROS) and markers of DNA, protein and lipid oxidative damage; a 
scenario that was progressively accelerated in SP-/- bladder lesions. 
Consistently, cell cycle de-regulation, urothelial atypia and dysplasia 
progressed and in tandem with increased production of ROS, by 
both cancerous and stromal cells, driving oxidative damage and 
inflammation [18]. The expression of markers of oxidative damage 
was augmented in SP-/- bladders along with increased activation of the 
downstream signaling cascades that converge in the activation of AP-1 
and NFκB, the major orchestrators of inflammation, carcinogenesis, 
invasiveness and metastasis [18,21-23].

The kinetics of SPARC protein expression during differentiation 
of primary stromal fibroblasts and macrophages revealed that it 
increased during early differentiation, then decreased to basal levels 
in macrophages but remained steady in differentiated fibroblasts. 
Heterotypic co-cultures of normal and cancerous urothelial cells 
with normal and tumor associated stromal cells indicated that 
SPARC inhibited the acquisition inflammatory secretory phenotype 
of Tumor Associated Macrophages (TAMs) and Cancer Associated 
Fibroblasts (CAFs) through inhibition of the activation of NFκB and 
AP-1 with subsequent decrease in their secreted cytokines and cancer 
cell invasiveness. These findings suggested that SPARC markedly 
inhibited the inflammatory feed-forward loop that is reciprocated 
and maintained among cancer cells, TAMs, and CAFs through 
secreted inflammasomes that sustain cancer cell proliferation, 
invasiveness, and metastasis, and play a critical role in stromal cell 
recruitment and differentiation. The kinetics of SPARC expression 
in cancerous and stromal cells implicated SPARC in the intricate 
tightly-regulated programs of cellular recruitment, proliferation, and 

Introduction
Secreted Protein Acidic and Rich in Cysteine (SPARC) is a 

matricellular glycoproteins that is implicated in myriad physiological 
and pathological conditions characterized by extensive remodeling 
and plasticity. The human SPARC gene was initially discovered as a 
bone matrix and an endothelial basement membrane protein (hence 
the names osteonectin/BM40). SPARC protein is encoded by a single 
gene in human chromosome 5q31.1 and mouse chromosome 11 
[1-3]. The biological functions of SPARC were depicted from the 
phenotypes of SPARC-deficient mice SP-/- and were related to defects 
of fibroblast and myeloid differentiation and plasticity [4,5]. More 
biological functions evolved with specific challenges of SP-/- mice as 
accelerated wound healing, increased angiogenesis, defective cardiac 
healing after myocardial infarction, lung fibrosis/inflammation and 
glomerulosclerosis after injury [6-17]. The accelerated growth of 
implanted subcutaneous tumors in SP-/- mice further highlighted 
the anti-tumorigenic functions of SPARC (summarized in [18]). 
In human cancers, SPARC plays contextual roles depending on the 
cancer type, whether it is produced by cancer cells or surrounding 
stromal cells [6,18-20]. Here in, we will review the current knowledge 
of the role and association of SPARC in different cancers (Figure 1). 

Genitourinary cancers
Urothelial cancer: The expression of SPARC protein and 

transcript were significantly downregulated in tumorigenic bladder 
cancer cell line T24T compared to its non-tumorigenic isogenic 
line T24 that decreased SPARC expression is associated with more 
invasive and metastatic phenotype [18]. High SPARC expression 
in bladder cancer tissues was associated with increased disease-free 
survival [18]. Genetic manipulation of SPARC expression in bladder 
cancer cell lines inversely correlated with their proliferation rate, 
restrained cell cycle progression and inhibited in vivo growth and 
metastasis [18]. Consistently, host-SPARC inhibited in vivo growth 
as well as spontaneous and experimental metastasis of murine MB49 
cells injected in SP+/+ mice as compared to the SP-/-counterparts. The 
tumor suppressor effect of host SPARC was attributed to decreased 
angiogenesis and inflammation; whereas the metastasis suppressor 
effect was mainly attributed to counter-adhesive effect of SPARC 
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plasticity. Therefore, the differential compartmentalization of SPARC 
may represent a state of aberrant homeostasis that might be directly 
involved in urothelial cell transformation through the persistent 
release of inflammatory mediators and ROS, ancillary to tumor 
growth and metastasis. 

Prostate cancer: Immunostaining of human and murine tumors 
demonstrated that both normal prostate epithelial cells and primary 
prostate carcinomas express low to moderate levels of SPARC, 
however, its expression is increased in metastatic foci [20,24-26]. 
Two studies were reported on the role of SPARC on autochthonous 
oncogene-driven prostate cancer in SP-/- mice crossed with oncogene-
driven prostate cancer mouse model “Transgenic Adenocarcinoma 
of the Mouse Prostate (TRAMP)” [20,27]. Crossing TRAMP mice 
with SPARC-null mice and generation of T+/SP+/+ and T+/SP-/- allowed 
studying the effect of SPARC on early phases of transformation 
and carcinogenesis [20]. When T+/SP-/- mice with a C57Bl/6 genetic 
background were compared to their T+/SP+/+ controls, loss of SPARC 
was associated with accelerated cancer development, progression, 
and soft tissue metastasis [20]. On the other hand, when T+/SP-/-mice 
in a mixed C57Bl/6/129 genetic background were compared to T+/

SP+/- (haploid insufficient) mice, no significant difference in tumor 
incidence, take and metastasis albeit a greater proportion of T+/SP-

/- mice developed a more severe grade of prostate cancer [27]. In 
this model, SPARC exerted multiple effects on cancer cells and the 
surrounding stroma [20]. On cancer cells, SPARC inhibited cell 
proliferation and induced cell cycle arrest at G1-S phase. The anti-
proliferative effect of SPARC on human and murine prostate cancer 
cells in vitro mirrored in vivo effects [20]. In syngeneic murine 
TRAMP cell lines subcutaneously implanted in SP+/+ and SP-/- mice 
[20], host SPARC restrained tumor growth and were associated 
with enhanced maturity of peri-tumoralfibrillar collagen, decreased 
angiogenesis and proteolytic activity. The suppressive effect of SPARC 
on prostate cancer was attributed, in part, to its negative effect on 
the constituents of the tumor microenvironment. Moreover, the 
enhanced proteolytic activity in the T+/SP-/- prostate tumors suggested 
a role in angiogenesis by increasing the bioavailability of angiogenic 
growth factors and proangiogenic inflammatory cytokines such as 
VEGF (and bFGF), IL-6, and MCP-1/CCL2, as well as making the 
ECM more permissive for neovascular growth and inflammatory cell 
influx [20]. Exogenous and/or overexpression of SPARC inhibited 
prostate cancer cell invasiveness. Paradoxically, when used as a 
chemo-attractant, SPARC enhanced the invasive properties of many 
prostate carcinoma cell lines, and induced matrix metalloproteinase 
activity in vitro [20,28,29]. While somewhat conflicting, these studies 
support the idea that tumor and/or stromal SPARC may limit primary 
prostate tumor development and progression; with the final outcome 
influenced by both the genetic background and the overall SPARC 
gene dosage. Because the TRAMP model rarely metastasizes to bones, 
it was not useful for testing the impact of SPARC on prostate cancer 
skeletal metastases. In vitro models has been developed using SPARC 
protein, bones and/or bone extracts from SP-/- and SP+/+ mice with 
human cell lines in vitro to mechanistically decipher the role of SPARC 
in the propensity of prostate cancer to metastasize to bones. The 
increased migration of prostate cancer cells was attributed to bone-
SPARC activating tumor αvβ3 and αvβ5-VEGF axis [30]. In addition, 
metastatic prostate cancer cells expressed a secreted isoform of ErbB3 
(p45-sErbB3), and induced SPARC expression and secretion by 

bone marrow osteoblastic lineage with subsequent increase in cancer 
cell invasiveness [29]. These data suggest that SPARC production is 
reciprocated by prostate cancer cells and specialized niche cells in 
new sites, which influence their ability to metastasize. 

A growing body of evidence suggests that SPARC exerts differential 
roles on prostate cancer cells in the bone microenvironment 
[20,24,25,29,30]. The effect of bone matrix-SPARC was further 
investigated using SP-/- and SP+/+ murine osteoblasts in vitro to 
represent the complex, crosslinked, and mineralized bone matrix [31] 
and was found to attenuate the growth of bone metastatic prostate 
cancer PC-3 cells, and increased their sensitivity to ionizing radiation 
[31]. The dynamic changes in the morphology and growth of PC-3 
cells on SP+/+ and SP-/- bone matrices suggests a complex series of 
changes in collagen topography [31]. In support of this is the enhanced 
osteolysis and enhanced growth of murine prostate cancer cells 
injected intra-osseously [32] suggesting that the proteolysis of SPARC 
could result in a more favorable microenvironment for metastatic 
cells. Consistently, cleavage of SPARC by metalloproteinases and 
cathepsin K [33,34] has been shown to release proteolytic fragments 
exerting distinct biological properties from those of the intact protein 
[35]. Metastatic prostate cancer cells have been shown to compete 
with hematopoietic stem cells within the skeletal niche, suggesting 
that an effect of bone matrix-SPARC on remodeling of the niche, 
influencing differentiation, fate commitment, and survival of niche 
cells [31,32,36-39]. Recently, gene expression profiling of indolent vs. 
aggressive prostate cancer cells revealed that significant upregulation 
of SPARC in indolent cells [40]. SPARC secreted by indolent cells 
stimulated BMP7 and DKK1 in bone microenvironment cells 
(bone stromal cells and bone mesenchymal stem cells, respectively) 
that in turn kept cancer cells in dormant state. In aggressive cells, 
SPARC expression was suppressed by DNA Methyl Transferase 3b 
(DNMT3b) as evidenced by reversal of the aggressive phenotype and 
restoration of SPARC expression by 5’-Azacytidine treatment. These 
studies suggested that the SPARC is epigenetically controlled in the 
bone microenvironment to play a key role in maintaining dormancy 
of prostate cancer cells [40].

Gynecologic cancers
Ovarian cancer: Although SPARC was found abundantly 

expressed by stroma cells in advanced phases of human ovarian 
cancer, a lot of evidence pointed to SPARC as a protein that, in 
different ways, normalizes the tumor microenvironment and to 
counter tumor growth [6]. Particularly, SPARC normalizes ovarian 
cancer cell microenvironment by reducing inflammation [7,41] as 
evidenced by molecular analysis of the ascitic fluid from SP-/-and 
SP+/+ mice orthotopically implanted with the ID8 ovarian cancer 
cell line. SP-/- ascites contained less IL-6, MCP-1/CCL2, VEGF and 
MMPs than SP+/+, suggesting that SPARC behaves as a homeostatic 
factor to solve inflammation. In vitro and in vivo studies identified 
SPARC as a novel ovarian cancer suppressor that functions primarily 
by virtue of its de-adhesive [19], anti-proliferative and pro-apoptotic 
effects [6,7,19,42]. These effects were attributed to the effects of 
SPARC inhibiting integrin-mediated and growth factor-mediated 
survival signaling pathways [6,7,42]. The anti-proliferative effect of 
SPARC in human and murine ovarian cancer cell lines is mediated 
through deregulation of cell cycle regulatory proteins and their 
inhibitors, causing cell cycle arrest at G1-S phase (Said, unpublished 
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data). Mechanistic studies implicated SPARC-mediated inhibition of 
adhesion and invasion through an axis involving β1 and β3 integrins-
MMPs-VEGF-VEGFR2 [6,19,42]. SPARC inhibited ovarian cancer 
cell matrix and trans-mesothelial invasiveness through inhibition 
of LPA-induced and cytokine-mediated inflammation and survival 
signaling [6,7,41,42]. Earlier reports demonstrated that SPARC 
expression in ovarian cancer cells is inversely correlated with the 
degree of malignancy [43-46]. In agreement with these findings, the 
decreased expression of SPARC in ovarian tumors is attributed to 
the aberrant hyper-methylation of the SPARC promoter [47]. The 
effect of tumor-SPARC in normalizing the ovarian cancer micro-
environment was studied using in vitro systems to dissect the molecular 
mechanisms of the interactions between human ovarian cancer cells, 
mesothelial cells, and macrophages [7,41]. In the immunocompetent 
SP-/- mice, the enhanced peritoneal ovarian carcinomatosis was 
concomitant with massive recruitment of macrophages and was 
positively correlated with the augmented levels and biological activity 
of ascitic fluid and its constituents, namely, VEGF, MMPs, MCP-1/
CCL2, IL-6, prostanoids, and bioactive lipids [6,7,41,42]. Restoration 
of SPARC expression in ovarian cancer cells disrupted their interplay 
macrophages and mesothelial cells, resulting in significantly decrease 
in inflammatory mediators [6,7,41,42]. Forced expression of SPARC 
decreased growth of platinum-resistant ovarian cancer cell lines in 
vitro and increased their sensitivity to chemotherapy in vitro and in 
vivo [48].

Cervical cancer: A genome-wide screening study for identification 
of hypermethylated genes in invasive cervical cancer revealed that 
SPARC exhibited highest frequency of aberrant methylation [49]. 
Consistently, in 2 independent studies, the methylation frequency of 
SPARC CpG islands increased with severity of the underlying cervical 
lesion [50,51] and highly correlated with the incidence of invasive 
cervical cancer [52]. In contrast, another study [53] showed SPARC 
overexpression and high serum levels significantly associated with 
the progression of cervical cancer and adverse prognosis of cervical 
cancer patients. 

Breast cancer: The role of SPARC in breast cancer initiation, 
progression and metastasis is another example of its contextual 
expression and function that was further confounded by the multiple 
subtypes of breast cancer. The role of SPARC in oncogene-driven 
breast cancer was investigated by Wong and colleague [27] using 
Murine Mammary Tumor Virus-Polyoma Middle T (MMTV-PyMT) 
crossed with SP-/- and heterozygous mice and revealed that loss of 
SPARC had no significant effects on tumor initiation, progression, 
angiogenesis, or metastasis. Similar to the observation by the same 
group in oncogene-driven prostate cancer model [27], the apparent 
insignificant difference may be attributed to SPARC gene dosage. 
In contrast, increased expression of SPARC is found in malignant 
breast tumors and is considered as a marker of poor prognosis and 
recurrence [54-59]. Studies utilizing model systems using human 
breast cancer cell lines in vitro or injected in nude mice appear to 
be conflicting due to variations in the experimental models used. 
For example, forced expression of SPARC by adenoviral vector 
[60] or inducible Tet-On system [61] did not affect MDA-231 cell 
proliferation, apoptosis, migration, cell aggregation, or protease 
cleavage of collagen IV but inhibited in vitro matrix invasion and 
in vivo metastasis that was attributed to reduced tumor cell-platelet 

aggregation and suggesting that the acquired resistance to the SPARC 
inhibitory effects in SPARC-expressing MDA-231, has been acquired 
as a selective pressure, as it occurs for TGF-β [61]. Models utilizing 
murine 4T1 breast cancer cell line in SP-/- mice backcrossed onto a 
BALB/c genetic background, reported smaller mammary tumors in 
SP-/- mice, accompanied by an enhanced infiltration of inflammatory 
leukocytes further highlighting the role of host-derived SPARC 
influencing the growth of these tumors. The differential effects are 
likely due to the immediate tumor environment, and not to the tumor 
cells themselves [62-64]. Forced SPARC expression in 4T1 cells using 
a retroviral vector reduced tumor growth and reduced metastasis, 
a phenotype that was related to the SPARC anti-proliferative effect 
rather than to migration induced by SPARC from the stroma as 
demonstrated by bone marrow transplantation performed to dissect 
the role of tumor- and stroma-derived SPARC [9].

In patients with breast carcinoma metastasizing to bone [65], 
SPARC and Endothelin 1/ETAR axis were highly expressed from 
dysplasia until bone metastasis, however, SPARC plasma level was 
as low as that of normal women, in contrast to patients that never 
develop bone metastasis, suggesting that circulating SPARC was 
counter adhesive. The authors concluded that early identification 
of SPARC/Endothelin-1/ETAR in dysplastic lesions would provide 
prognostic and therapeutic advantage. In a model utilizing parental 
breast cancer cell line MDA-MB231, the derived 1833-bone 
metastatic clone [66], transcriptional, post-transcriptional and 
post-translational (stabilization, glycosylation) mechanisms were 
responsible for regulating SPARC and Endothelin expression in bone 
metastasis and in surrounding bone-marrow cells. In vitro and in vivo 
xenografts using 1833 cells exposed to dAza, long-term blockade of 
DNA methyltransferases slowed-down metastasis outgrowth through 
downregulation of SPARC and upregulation of Endothelin-1. The 
transcription factor Twist and miR29a seemed to be involved in the 
methylation-controlled signaling pathway for SPARC expression and 
Endothelin 1 transactivation.

Gastrointestinal cancers
Esophageal cancer: Alteration in SPARC expression has been 

observed in esophageal squamous cell carcinoma and adenocarcinoma 
[67-70]. In patients with Barrett’s esophagus, progressive increase 
in SPARC expression from normal and premalignant to malignant 
lesions in esophageal cancer was demonstrated [67,69,70] suggesting 
the utility of SPARC screening for diagnosis of occult malignancies. 
Several investigators have shown that SPARC levels may have 
prognostic significance in esophageal cancer [67,68] using genome-
wide gene expression profiling of resected esophageal cancers 
indicated that patients with low SPARC had a significant improvement 
in outcome. Another study revealed that SPARC was not detected in 
normal esophageal mucosa, but was expressed in stromal fibroblasts 
in 84.6% and in cancer cells in 7.8% of esophageal squamous cell 
carcinoma cases [71]. While the expression of SPARC alone was not 
significantly correlated with patients’ survival, patients with elevated 
levels of laminin-5γ2 chain and SPARC had a poorer prognosis [71]. 

Gastric cancer: Human gastric cancer cell lines expressed variable 
levels of SPARC. Down-regulation of SPARC in high expressing cell 
lines inhibited their invasion and growth [72]. In tumor tissues, 
expression of SPARC protein was mainly in peri-tumoral stroma 
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and was negatively correlated with the expression of VEGF, vascular 
density and tumor cell proliferation [73,74]. Conversely, SPARC 
transcript and protein levels were up-regulated in tissues of diffuse-
type gastric cancer and intestinal-type gastric cancer patients and 
were correlated with invasiveness and poor prognosis [75,76]. SPARC 
transcript was up-regulated in primary gastric carcinoma tissue and 
the corresponding lymph node metastasis compared with the non-
neoplastic mucosa. However, immunostaining of SPARC protein 
in these tumors revealed increased SPARC expression in stromal 
fibroblasts rather than in tumor cells. Recently, the associations 
between SNPs in the SPARC 3’-Untranslated Region (UTR) and time 
to gastric cancer recurrence revealed that patients carrying at least one 
G allele of the SPARC rs1059829 polymorphism (GG, AG) showed 
a longer median Time to Tumor Recurrence (TTR) compared to 
patients with AA; whereas, patients harboring the G-A-A haplotype 
had the highest risk of tumor recurrence [77].

Intestinal adenomas: The involvement of SPARC in oncogene-
driven intestinal adenomas was studied by crossing SP-/- with ApcMin/+ 
mice generating cohorts of ApcMin/+SP+/+ and ApcMin/+SP−/− mice 
equally segregating mixed genetic background [78] and comparing 
the ensuing adenomas of the second progeny crosses. This study 
reported that SPARC exhibited a 2-3 fold upregulation in adenomas 
at both the transcript and protein levels compared to the normal 
epithelium. SPARC deficiency resulted in decreased number of 
the developing intestinal adenomas with no difference in their 
size, distribution, malignant transformation or extra-intestinal 
malignancies. The phenotype observed was attributed to the effect of 
SPARC on enterocyte migration along the crypt–villus axis. 

Colorectal Cancer (CRC): SPARC has been consistently 
considered to be a tumor suppressor in CRC according to the 
evidence from experimental cell models, SP-/- mice and clinical 
cohort studies [79]. In addition, exogenous SPARC, in combination 
with chemotherapy, was highly efficacious in achieving tumor 
regression in animal xenografts [79]. Genome-wide analysis revealed 
SPARC promoter hypermethylation in advanced resistant CRC 
cells and tumors, and identified specific methylated CpG islands in 
SPARC promoter. SPARC expression was restored by demethylating 
agent 5-Aza-2′deoxycytidine, leading to improved sensitivity to 
chemotherapy [80-82]. In a chemical carcinogenesis model of 
colorectal cancer using SP-/-and SP+/+ mice [83], Aoi, et al. reported 
a protective function of exercise-induced SPARC released from 
muscle tissue into the circulation significantly reducing the number 
of aberrant foci and crypts in the colons of SP+/+ mice, but not in 
SP-/- mice. The injection of low- or high-dose recombinant SPARC 
prevented the formation of chemically induced aberrant crypts in the 
colons of SP+/+ mice; however, whether exogenous SPARC rescues 
the reported phenotype in SP+/+ mice is unclear. Mechanistic studies 
indicated that both transcriptional and translational mechanisms 
potentiate the production and secretion of SPARC protein. This study 
suggested that SPARC can directly induce the apoptosis of colon 
cancer cells and inhibit their proliferation, and may indirectly prevent 
tumorigenesis by regulating the microenvironment in the colonic 
tissue; however such possibilities were not investigated [83,84]. 

Pancreatic cancer: Another example of the contextual expression 
and function of SPARC is represented by pancreatic cancer where 

aberrant methylation of SPARC promoter was reported in tumor 
tissues from small scale study comprising 40 patients with pancreatic 
cancer and the adjacent normal tissues, 6 chronic and 6 acute 
pancreatic tissues. Altered methylation patterns of SPARC gene was 
suggested as an early diagnostic biomarker of pancreatic cancer [23]. 
Gene expression profiling and confirmatory RT-PCR demonstrated 
that SPARC mRNA was expressed in non-neoplastic pancreatic 
ductal epithelial cells, but was not expressed in a majority of pancreatic 
cancer cell lines. SPARC protein was overexpressed in the juxtra-
tumoral stromal fibroblasts, not the cancerous compartment. Primary 
fibroblasts from pancreatic cancer strongly expressed SPARC mRNA 
and protein, and treatment of pancreatic cancer cells with exogenous 
SPARC resulted in growth suppression [23]. SPARC expression in 
fibroblasts from noncancerous pancreatic tissue was augmented by co-
culture with pancreatic cancer cells [23,85-87]. However, high SPARC 
in peri-tumoral stromal fibroblasts correlated with poor prognosis 
and poor patients’ survival. SPARC expressed by human Pancreatic 
Stellate Cells (hPSCs) exerted a paracrine effect increasing invasion of 
pancreatic cancer cells [88]. In contrast, another study [89] reported 
that knockdown of SPARC expression in pancreatic cancer cells 
inhibited in vitro and in vivo growth and metastases. Experimental 
mouse models indicate host SPARC as inhibitor of tumor growth 
and metastasis. Murine pancreatic adenocarcinoma cells injected 
subcutaneously grew significantly faster and attained larger sizes in 
SP-/- mice [90]. Lack of host SPARC resulted in decreased collagen 
deposition and fibrillogenesis, alterations in the distribution of 
tumor-infiltrating macrophages, and decreased tumor cell apoptosis. 
Although there was no difference in micro-vessel density of tumors 
from SP-/- or SP+/+ mice, tumors grown in SP-/- had a lower percentage 
of mature blood vessels. Consistently, orthotopic pancreatic tumors 
produced more metastasis in SP-/- mice [91] that were mediated in 
part through MMP-9 impacting ECM deposition and angiogenesis. 
Another explanation is that in absence of stromal- SPARC, aberrant 
TGFβ signaling accelerates tumor growth and metastasis in SP-/- mice 
with increased vascular permeability, inflammation and fibrosis [92-
94].

In human tumors, two independent studies implicated stromal 
SPARC as strong marker of poor prognosis and patients’ survival 
[88,95]. A recent prospective randomized phase III study including 
160 patients treated with curatively intended resection and receiving 
adjuvant treatment with gemcitabine, reported inverse correlation 
between disease-free and overall survival and strong SPARC 
expression in cancer cells and surrounding stroma [96]. However, no 
significant correlation was found between stromal SPARC expression 
and depth of tumor invasion, lymph node metastasis, stage, 
histopathological tumor grade, lymphatic invasion, vascular invasion 
or surgical margin [96]. SPARC expression was also shown to be a 
predictive marker independent of CA19-9 levels [97]. In contrast, 
stromal-SPARC has been reported as a biomarker of therapeutic 
efficacy of albumin-encapsulated nanoparticles nab-paclitaxel 
evidenced by high stromal SPARC concomitant with high intra-
tumoral paclitaxel [97,98]. The combination of gemcitabine plus 
nab-paclitaxel was evaluated in 36 patients with previously untreated 
advanced pancreatic cancer. Patients with high stromal-SPARC 
expression exhibited increased overall survival compared to the low- 
SPARC group [97,99]. Improved survival was correlated with SPARC 
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overexpression in the stroma but not in the tumor. Nab-paclitaxel 
alone and in combination with gemcitabine caused depletion of 
desmoplastic stroma with resultant vasodilation, which together 
helped to achieve an increased intra-tumoral gemcitabine penetration 
and better response. Hence, the effect SPARC was attributed to 
normalization of the desmoplastic stroma, in addition to its effect 
enhancing drug delivery [97,99] In a more recent study [100], Nab-
paclitaxel treatment of mice-bearing Patients’-Derived Xenografts 
(PDX) neither decreased tumor stroma nor increased tumor vascular 
perfusion. These data suggested that the specific tumor delivery of 
nab-paclitaxel is not directly related to SPARC expression, and nab-
paclitaxel does not deplete tumor stroma in general. 

Another prognostic/therapeutic implication of stromal-SPARC 
in pancreatic cancer is that SPARC-positive tumor-associated stromal 
cells were proposed as potential targets to improve the oncolytic 
efficacy of Conditionally Replicative Adenoviruses (CRAd) [101]. 
SPARC-positive transformed human micro-endothelial (HMEC-1) 
cells enhanced the oncolytic activity of CRAd, Ad (I)-F512-TK, on 
the SPARC-negative pancreatic cancer cell line MIA PaCa-2 in vivo. 
Similarly, the in vitro oncolytic activity of CRAd increased when MIA 
PaCa-2 cells were incubated in HMEC-1 and fibroblast conditioned 
media [101].

Hepatocellular Carcinoma (HCC): Primary HCC tissues showed 
a lower SPARC expression compared with their corresponding 
non-tumorous livers (65.00%, 39/60) [73,102] and was significantly 
correlated with methylation level of SPARC promoter. In the SMMC-
7721 cell line, the loss of SPARC expression was correlated with the 
aberrant methylation that was reactivated by the demethylating 
agent 5-aza-2’-deoxycytidine. Methylation frequency of SPARC in 
HCC was significantly higher than that in the corresponding non-
tumorous tissues (45/60 vs. 7/60, P< 0.001), and it was correlated with 

the pathological classification (P = 0.019). Patients with methylated 
SPARC had poorer overall survival. Therefore, SPARC methylation 
status may be a promising biomarker for the diagnosis and prognosis 
of HCC [102].

Neurologic malignancies
Meningiomas: SPARC was not expressed in benign, noninvasive 

tumors, but was highly expressed in invasive tumors, regardless 
of the grade, suggesting that SPARC is a potential diagnostic and 
predictive marker of invasive meningiomas [103]. The relationship 
of basement membrane intactness and SPARC protein expression 
at the meningioma-brain border was examined in non-invasive and 
brain-invasive meningiomas [104]. SPARC was expressed at the 
tumor-brain interface of invasive meningiomas, in spindle-shaped 
tumor cells; with no significant difference across tumor grades. 
SPARC-positive spindle cells inversely correlated with basement 
membrane proteins as Epithelial Membrane Antigen (EMA), 
collagen IV and Glial Fibrillary Acidic Protein (GFAP). However, 
the destruction of the basement membrane and appearance of 
SPARC-positive spindle cells were not coincident during the course 
of brain invasion. Consistently, SPARC expression was more 
frequent in atypical and in anaplastic than in benign meningiomas 
and was significantly associated with tumor recurrence [105]. High 
SPARC expression was predominantly identified in meningothelial, 
fibrous and chordoidmeningiomas; whereas low SPARC expression 
was spotted in secretory and psammomatousmeningiomas. High 
SPARC expression was significantly associated with poor patient 
survival [105]. In agreement of the pro-invasive effect of SPARC 
on meningiomas, SPARC was found to be negatively regulated by 
meningioma tumor suppressor CD13/Aminopeptidase N (APN) 
whose expression and enzymatic function are reduced in aggressive 
meningiomas [106]. 

Figure 1: Schematic illustration of the reported roles of SPARC in lieu of the hallmarks of cancer. Dashed lines represent the potential inferred effects and the red 
arrow represents reported contextual pro-invasive effect.
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Glioma: SPARC expression is increased in infiltrating gliomas at 
the brain-tumor interface, suggesting that SPARC may be involved in 
tumor infiltration and aggressive behavior [107-109]. Gene expression 
profiling data analysis of patient samples with advanced glioma, 
Glioblastoma Multiforme (GBM) [110] identified the prognostic 
and predictive utility of SPARC along with Doublecortex (DCX), 
and Semaphorin 3B. The concordance of higher values of these three 
genes together associated with poorer survival; however none of them 
serves as a useful predictive marker alone. The expression levels of 
individual genes were not highly correlated with one another [110]. 
In contrast, co-expression of DCX and SPARC in glioma cell lines 
by adenovirus transduction counteracted the invasion-promoting 
effects of SPARC, and collaboratively increased sensitivity of glioma 
cells to radiation therapy through cell cycle arrest and increase 
irradiation-induced apoptosis [111]. Higher SPARC expression in 
glioma cell lines delayed their growth in vitro and inversely correlated 
with tumor volume and invasiveness in vivo [112-115] through 
modulation of cell proliferation, matrix adhesion and upregulation of 
MMPs and urokinase-type Plasminogen Activator (uPA) [113,114]. 
Ectopic expression as well as exogenous SPARC increased survival 
and invasiveness of glioma cells through activation of PI3K-Akt, 
Focal Adhesion Kinase (FAK) and Integrin-Linked Kinase (ILK) 
[116,117]. In addition, upregulation of uPA may also be involved in 
SPARC-mediated Akt activation [118,119]. The tumor suppressor 
PTEN inhibited SPARC-induced migration through suppression and 
differential regulation of pAkt and p38 MAPK-MAPKAPK2-HSP27 
signaling pathway [118]. 

Astrocytomas: A study by Capper and colleagues [120] 
reported inverse correlation between SPARC expression and tumor 
progression and grade. Increased SPARC expression was associated 
with decreased proliferation. While there is no association between 
the level of SPARC in the tumor cells and patient survival, increased 
tumor vascular SPARC expression is associated with decreased 
patient survival [120].

Medulloblastoma: SPARC exerts a tumor suppressor effect on 
medulloblastoma and induces neuronal differentiation through 
multiple pathways [121-125]. SPARC was identified as an effector 
of Src-induced cytoskeleton disruption in medulloblastoma cells 
leading to decreased migration and invasion [123]. Overexpression 
of SPARC inhibited in vivo angiogenesis through inhibition of MMP-
9-VEGF axis [122]. In addition, the anti-proliferative and cell cycle 
inhibitory effects of SPARC on medulloblastoma were dependent 
on IL6-STAT3-Notch axis which induced neuronal differentiation 
rendering tumors more susceptible to chemo- and radio-therapy 
[121,124]. SPARC treatment exerted a synergistic effect with 
irradiation increasing medulloblastoma cell death in vitro and in 
vivo. SPARC expression prior to irradiation suppressed Checkpoints 
(CHK)-1,-2, p53 phosphorylation and DNA repair gene XRCC1 as 
well as irradiation induced SOX4-mediated DNA repair [125].

Neuroblastoma: SPARC has been reported as a tumor 
suppressor in neuroblastoma through inhibition of cell proliferation, 
invasiveness, and angiogenesis in vitro and in vivo [126-129]. The 
anti-proliferative effect of SPARC was attributed to suppression of 
Akt activity accompanied by an increase in the tumor suppressor 
protein PTEN in vitro and in vivo [130]. The anti-angiogenic effect 

of SPARC was mediated by its Follistatin-like (FS) domain [126]. In 
addition, consistent with the effect on SPARC on medulloblastoma, 
overexpression of SPARC in neuroblastoma cells sensitized cells to 
radiation therapy in vitro and in vivo [130].

Skin cancer and melanoma
Squamous cell carcinoma: The effect of SPARC on spontaneous 

development of skin cancer was investigated in SP-/- mice crossed 
with SKH-1 hairless mice to generate hairless SP-/- mice and exposed 
them UV-irradiation [131]. Exposure to UVB, wild-type mice 
developed severe extensive squamous cell carcinomas whereas SP-/- 

mice were strikingly tumor-resistant, developing less than one small 
non-cancerous papilloma per mouse. SPARC was undetectable 
immunohistochemically in skin from the non-irradiated control 
group yet was present in relatively high quantities in the basal and 
superficial areas of the tumor mass. The SP-/- mice exhibited a limited 
contact hypersensitivity response and were refractory to UV induced 
immune suppression without morphometric and connective tissue 
changes that normally occur following UV exposure [131]. 

Melanoma: SPARC expression has been reported to increase 
with tumor progression, and its expression was shown to be a 
marker for poor prognosis [132]. SPARC knockdown in melanoma 
cells led to the complete loss of their in vivo tumorigenicity in nude 
mice [101,133] through a mechanism involving the activation 
of polymorphonuclear cell–anti-tumor activity. Importantly, 
SPARC expression in melanoma cells has been associated with the 
acquisition of mesenchymal characteristics with reduced E-cadherin 
expression. Suppression of SPARC expression in human melanoma 
cells compromised cell migration, adhesion, cytoskeleton structure, 
and cell size. These changes involved the Akt/mTOR pathway. 
Re-expression of SPARC or protein addition restored all the cell 
features. Suppression of SPARC expression was associated with 
increased Rac1-GTP levels and its membrane localization. Overall, 
these data suggest that most of the SPARC-mediated effects occurred 
mainly through the blockade of Rac1 activity [134]. However, the 
in vivo tumorigenicity and invasiveness of melanoma cells were 
dependent on tumor- SPARC and metalloproteinase activity not 
stromal SPARC [132,135-141]. Comparative proteomic analysis of 
melanoma secretomes identified SPARC as a novel tumor-derived 
vascular permeability factor functioning through the endothelial 
VCAM1 receptor and p38MAPK signaling [142]. SPARC deficiency 
abrogated tumor-initiated permeability of lung capillaries and 
prevented extravasation, whereas SPARC overexpression enhanced 
vascular leakiness, extravasation and lung metastasis. Blocking 
VCAM1 impeded melanoma-induced endothelial permeability and 
extravasation. Consistently, high levels of SPARC were detected in 
tumors from human pulmonary melanoma lesions [142]. 

Lung cancer: SPARC expression in human Non-Small Cell 
Lung Cancer (NSCLC) tissues was significantly lost in the cancerous 
compartment, whereas substantial expression SPARC in stromal 
fibroblasts [143]. Stromal SPARC correlated with tumor necrosis, 
nodal metastasis, and poor prognosis [143]. Interestingly, SPARC 
promoter has been found to be methylated in lung cancer cell lines 
and tissues by a mechanism involving activation of DNMT1 by Cox2 
[144]. Recently, a study by Grant and colleagues [145] reported the 
upregulation of SPARC by ectopic overexpression of Snail in NSCLC 
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cell lines. Snail overexpression led to increased SPARC-dependent 
invasion in vitro. Both the TGF-β1 and TGF-β receptor 2 (TGF-βR2) 
were upregulated following Snail overexpression concomitant with 
MiR-29b downregulation, suggesting a Snail-dependent activation 
of TGF-β resulting in downregulation of miR-29b and subsequent 
upregulation of SPARC. 

Conclusion
The role of SPARC in different cancers is still controversial 

due to: 1) the lack of preclinical models that faithfully recapitulate 
pre-neoplastic and neoplastic evolution of a given cancer and the 
dynamic interactions of tumor and stromal compartments, and 
2) Technical variations in cell-based preclinical models. Reports 
of SPARC expression in human cancers rely on retrospective 
analysis of patients samples and are often confounded by the lack 
of normal controls or chemo-and/or radiation therapy prior to 
surgical resection of tumors. In addition, SPARC expression exhibits 
distinctive compartmentalization with differential effects on tumor 
cells and stromal cell differentiation and plasticity. Therefore, careful 
interpretation of the gene expression profiling is warranted. The 
mechanisms of regulation of SPARC expression and functions in 
the different cell types in a given tumor microenvironment are still 
elusive. A point that requires further investigation in a given cancer 
is whether stromal SPARC is a reaction to restrain or foster tumor 
growth. The translational significance of the inhibitory effect of tumor 
cell and host SPARC on carcinogenesis, progression, and metastasis 
makes SPARC a viable candidate in the adjuvant and/or neoadjuvant 
settings as a single agent or in combination with standard of care 
radiation or chemotherapies. Restoration of SPARC expression can 
be achieved by demethylating agents, administration of synthetic full 
length protein or tumor suppressor domains, or other yet to unravel 
agents. In addition, in cancers with high stromal SPARC, SPARC can 
be exploited as prognostic and/or biomarker for targeted stromal 
therapy and delivery of chemo- or immune-therapeutics.
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