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Abstract

The normal atrial function includes ventricular systolic storage 
function, early ventricular diastolic conduit function, and auxiliary 
pump function in late ventricular diastolic function, which assists 
in ventricular filling and maintaining cardiac output. Atrial dysfunc-
tion can result in or increase cardiac dysfunction, impacting the 
patient’s quality of life and life expectancy, even in the absence of 
evident valve or ventricular problems. Atrial failure, which mostly 
refers to the left atrium, has recently been given new clinical mean-
ing and is being treated as a separate condition [1]. The mechanism, 
diagnosis, and potential therapeutic targets of atrial failure will be 
discussed in this article to better comprehend and treat atrial fail-
ure in the future. 
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Introduction

Previously, the importance of cardiomyocytes in heart failure 
was usually disregarded in favor of the notion that left ventricu-
lar dysfunction and neurohumoral factors were the main causes 
of heart failure [2]. The atria not only play an important role in 
storage, channeling, and pumping in the ventricular filling, but 
they also play a unique role in cardiac electrical activity, endo-
crine and regulation by pacing conduction, secretion of Atrial 
Natriuretic Peptide (ANP), feedback inhibition of sympathetic 
nerves [3,4]. Even without left ventricular dysfunction, heart 
failure can still happen [5,6]. Similar to ventricular failure, which 
eventually results in heart failure, atrial failure is an influencing 
factor that is even more important than previously thought [7]. 
Atrial failure, which generally refers to atrial dysfunction inde-
pendent of Atrial Fibrillation (AF) and heart failure in the ab-
sence of obvious valvular abnormalities or ventricular dysfunc-
tion, due to atrial anatomical, mechanical, electrophysiological, 
and/or hemodynamic abnormalities, and the presence of clini-
cal symptoms associated with cardiac insufficiency is currently 
not defined in a uniform way. This results in a decrease in qual-
ity of life and life expectancy [1]. The mechanical dysfunction 
of left atrial failure is accompanied by endocrine and/or atrial 
regulatory failure, which manifests as a lack of ANP synthesis, 
ANP resistance, the dominance of sympathetic nervous system 
excitation, excessive release of vasopressin, etc. This causes an 
excessive activation of neurohumoral fluids, vasoconstriction, 
and volume overload [8], which precipitates or exacerbates 
heart failure.

 Mechanisms of Atrial Failure

Many conditions can impair the atria by affecting the electri-
cal coupling between the atrioventricular and the atrium, the 
hemodynamics or function of the atrium, thereby promoting 
thrombosis, causing pulmonary hypertension, and even heart 
failure. Atrial remodeling can increase a patient’s susceptibility 
to AF, and the persistence of AF aggravates atrial remodeling 
and induces new atrial fibrillation, eventually forming a vicious 
circle. In addition, atrial failure may activate neuroendocrine 
pathways (renin-angiotensin-aldosterone system and sympa-
thetic nervous system), which could result in atrial remodeling, 
and further impair atrial function.

Electrical Activity is Out of Synchronization

There are two main reasons why electrical activity is dyssyn-
chrony: interatrial and atrioventricular dyssynchrony. When the 
mitral valve closes, left atrial agitation in the interatrial conduc-
tion block is delayed and even starts to contract, leading to an 
instantaneous increase in left atrial pressure and abnormal en-
largement of the left atrium[9]. Pulmonary hypertension results 
from an increase in left atrial pressure that travels down the 
pulmonary veins and into the pulmonary capillary system [10]. 
Atrial enlargement predisposes to atrial rhythm disturbances, 
especially AF increasing the likelihood of thrombosis [11]. In 
the atrioventricular block, the atrial contracts ineffectively, and 
blood stasis in the atria leads to thrombosis, increasing the risk 
of stroke. Patients with cryptogenic stroke may have a severe 
atrial failure, according to research by Leong DP et al.[12]. In 
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addition, Additionally, the AV block results in a considerable re-
duction in cardiac output and the loss of the AV contraction se-
quence.   Heart failure is more likely to occur if the heart already 
hasunderlying lesions.

Impairment of Auxiliary Pump and Storage Function

Whether it is rapid or disordered atrial arrhythmias (such as 
AF), or extensive atrial fibrosis caused by atrial remodeling and 
Atrial Cardiomyopathy (ACM), all impair the normal contraction 
and relaxation of the atrium, resulting in thrombosis, left ven-
tricular hemodynamic damage, and clinical manifestations of 
cardiogenic stroke, myocardial ischemia, even heart failure. At 
the same time, atrial failure is accelerated by the simultaneous 
promotion and effect of AF and atrial fibrosis.

Atrial fibrillation: AF is the most common clinical persistent 
arrhythmia [13], and AF is associated with an increased risk of 
thromboembolic events, particularly cardiogenic stroke, as well 
as heart failure and all-cause mortality [14]. AF irregularly de-
scends to excite the ventricles, impairs filling and contractile 
functions of the ventricles, as well as reducing ejection. The 
disorder of atrial rhythm in AF patients leads to ineffective con-
traction of the atrium, blood in the atrium cannot be effectively 
pumped into the ventricles, which causes blood stasis and aber-
rant intimal function, both of which make thrombus formation 
simple. Predisposing factors for AF include older age, left atrial 
enlargement, decreased left atrial function, left ventricular sys-
tolic dysfunction, and heart failure, as well as coronary artery 
disease, and pulmonary, or mitral valve disease [15]. Emerg-
ing evidence suggests that oxidative stress, calcium overload, 
inflammation, microRNAs, and myofibroblast activation are 
all thought to be associated with AF and AF-induced atrial re-
modeling [16]. Patients with chronic AF showed alterations in 
heart structure and function according to Fuchs et al. Compared 
with normal participants, patients with chronic AF have a larger 
left atrium and reduced left ventricular systolic and diastolic 
function [17]. In the development of atrial remodeling, AF can 
further impair the electrical activity and mechanical action of 
cardiomyocytes, which has a detrimental effect on the overall 
heart function [18]. In addition, studies have shown that the 
autonomic nervous system is also involved in the initiation and 
persistence of AF [19]. Its activation can cause significant and 
heterogeneous changes in atrial electrophysiology and induce 
atrial tachyarrhythmia, including atrial tachycardia (AT) and AF 
[20]. Increased sympathetic activity is the immediate response 
to the conflicting messages of increased cardiac filling pressure 
and decreased arterial blood pressure during AF , and long-
term effects may impair cardiopulmonary pressure reflex gain, 
exacerbating AF [21].In patients with chronic AFNguyen et al. 
demonstrated that the density of atrial sympathetic nerves in-

creases significantly [22]. Activation of parasympathetic com-
ponents in the heart's intrinsic autonomic nervous system may 
lead to heterogeneous changes in atrial fibrillation cycle length 
(AFCL), enhancing pulmonary venous site receptor excitation 
[23]. Autonomic nervous system activity may also be the result 
of reflex excitation brought on by AF itself in a large proportion 
of AF patients, in addition to risk factors such as hypertension, 
obesity, and sleep-disordered breathing [19]. The occurrence of 
AF further impairs atrial function, forming a vicious circle of "AF 
producing AF" [24].

Atrial Remodeling, atrial cardiomyopathy, and atrial fibro-
sis: Atrial remodeling is an adverse structural, functional, and 
electrophysiological alteration of atrial myocytes as a result of 
arrhythmias or stress/volume overload [25]. Cardiomyocyte 
proliferation, hypertrophy, necrosis, apoptosis, extracellular 
stroma, energy metabolism, altered ion channel expression 
atrial hormone secretion, and atrial fibrosis are histological fea-
tures of atrial remodeling [9,26]. ACM is defined as a myocar-
dial disorder associated with dysfunction of mechanical and/
or electrical activity that usually, but not always, presents with 
atrial fibrosis, hypertrophy, or enlargement [27]. Markers of 
atrial stromal lesions were associated with an increased risk of 
stroke in a cohort of patients without a history of AF or stroke, 
[28]. ACM impairs the storage function of the atria and poor 
ventricular filling. The histological features of ACM are as fol-
lows: (1) cardiomyocytic lesions; (2) fibrosis; (3) Myocardial 
lesions combined with fibrosis; (4) Primary non-collagen infil-
tration (with or without cardiomyocyte changes) [29]. In atrial 
remodeling and ACM, atrial fibrosis is an important pathological 
manifestation of both. 

Cardiac fibroblasts, which are inherently unexcitable cells 
but can transfer electrical currents between cardiomyocytes 
through connexins, are chiefly responsible for atrial fibrosis. 
Studies have shown that the RAAS and TGFβ pathways signifi-
cantly regulate the development of cardiac fibrosis [30]. Fibro-
sis leads to heterogeneity of current conduction, shortening 
action potential, depolarization of resting cardiomyocytes, and 
inducing stage 4 automatic depolarization of cardiomyocytes 
[31]. Atrial fibrosis slows local conduction and increases con-
duction heterogeneity in vitro, according to research from Li 
et al. and disruption of normal electrical conduction and the 
establishment of new circuits increase the incidence and dura-
tion of AF [32]. Whether atrial myocardial fibrosis is the cause 
or effect of AF is unclear. Previous studies have only shown 
that AF is inextricably linked to left atrial structural remodeling, 
which ultimately manifests as a reduction in atrial myocytes, an 
increase in interstitial collagen content, and atrial wall fibrosis. 
Oakes et al. found that the expansion of atrial fibrosis in pa-
tients six months after catheter ablation was associated with 
increased recurrence of arrhythmias [33]. In another study, 
persistent AF and left atrial fibrosis > 35% were associated with 
increased AF recurrence [34]. In a word, atrial fibrosis is a key 
factor in the development of atrial fibrillation based on heart 
failure [35]. Arrhythmias based on atrial fibrosis can develop 
changes in the cardiomyocyte matrix as part of atrial remod-
eling in AF patients. Atrial fibrosis causes atrial hemodynamic 
overload, which affects the extension of atrial tissue and causes 
atrial dysfunction.

Damaged Conduit Function

The so-called conduit function is that during the early and 
middle diastolic periods, the active diastolic of the left ventricle 

Figure 1: Summary of mechanism for atrial failure.
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draws blood from the left atrium that is passively emptied to fill 
the ventricle [36]. The mitral valve opens at this time. The left 
atrium is directly exposed to left ventricular pressure, and blood 
flow in the conduit is significantly affected by the diastolic prop-
erties of the left heart and the pressure gradient relative to the 
pulmonary veins [37]. Abnormalities in transvalvular pressure 
difference can affect conduit function [1]. As mentioned above, 
dilation and deformation of the atria predispose to AF. Once AF 
occurs, normal synchronous atrial contraction is lost [38]. Dif-
ferences in transvalvular pressure often obstruct the left atrial 
empty, secondary to pulmonary hypertension. In patients with 
chronic thromboembolic pulmonary hypertension, storage, and 
conduit function in the right atrium are significantly impaired 
[39].  The left atrial conduit volume may even be a new indica-
tor of the classification and grading of ventricular Diastolic Dys-
function (DD) and provide a sensitive but moderately specific 
parameter to distinguish between not DD or mild and severe 
DD, according to recent evidence, which suggests that altered 
atrial conduit function is a predictable and quantifiable re-
sponse to DD [40]. The study by Raafset al. demonstrated that 
left atrial conduit strain can be a strong and independent pre-
dictor of prognosis for dilated cardiomyopathy [41]. A previous 
study by Tello et al. compared right atrial conduit strain with 
invasive pressure-volume loop curves in patients with pulmo-
nary hypertension and found that right atrial conduit strain was 
associated with right ventricular diastolic capacity [42]. This is 
similar to what is observed in the left heart, where damage to 
conduit function mainly affects ventricular filling.

Diagnosis of Atrial Failure

Imaging Evaluation

In clinical practice, atrial size is often used as a surrogate 
marker of atrial function, with larger atria often considered 
"dysfunctional" atria [43]. Imaging is a convenient means to de-
termine atrial size and function and to assess atrial fibrosis and 
hemodynamics.

Echocardiography: Echocardiography is the preferred meth-
od for evaluating atrial structure and function. Speckle Tracking 
Imaging (STI), Real-Time Three-Dimensional Echocardiography 
RT3DE), and other new technologies can make up for the short-
comings of traditional ultrasound to a certain extent, which in-
clude geometric model assumptions and angle dependence. 

Some studies suggest that left atrial dysfunction may pre-
cede changes in left atrial volume [44]. Changes in left atrial 
function may be more sensitive than those in volume, when 
detecting abnormal myocardial function and intervention ef-
fectiveness, so left atrial strain has important diagnostic and 
prognostic value [45]. Independent of lung blood flow, left atrial 
appendage, and angle, STI can track the relative movement of 
myocardial spots frame by frame during each cardiac cycle, ac-
curately measure myocardial strain, and quantitatively evaluate 
cardiac function and wall movement. Two varieties are now 
available: two-dimensional and three-dimensional. Based on 
the original 2D-STI, 3D-STI tracks the movement trajectory of 
myocardial spot echoes in three-dimensional space, making up 
for the shortcomings of low spatial resolution of 2D-STI and the 
difficulty in fully reflecting the three-dimensional information 
of myocardium in three-dimensional space. Left atrial strain in-
cludes longitudinal, radial, and annular strains, but the overall 
longitudinal strain of the left atrium is the most diagnostic in 
evaluating left atrial structure and function due to the thinness 
of the left atrial myocardium [46]. According to the three-time 

phases of the left atrium, the overall longitudinal strain of the 
left atrium is divided into left atrial storage phase strain (LASr), 
conduit stage strain (LAScd), and Systolic Phase Strain (LASct). 
Pathan F et al. included 2542 healthy subjects using STIs to pro-
pose a normal reference range for three important functional 
strains in the left atrium: storage strain of 39 percent, conduit 
strain of 23 percent, and systolic strain of 17 percent [47]. For 
patients with AF, the left atrial strain has been shown to pro-
vide stroke risk stratification independent of the CHA2DS2-VASc 
score and help guide anticoagulation [48,49]. Sarvari et al. used 
2D-STI to take the standard deviation of the 18-segment sys-
tolic duration of the left atrial wall (systolic duration refers to 
the interval between the peak of the P wave on the ECG and 
the maximum shortening rate of the left atrium), that is, the 
Left Atrial Mechanical Dispersion (LAMD) as the evaluation pa-
rameter. The evaluation of left atrial systolic synchronicity in 61 
patients with normal or mildly enlarged left atrium showed that 
anterior descending branch (LAD) in patients with recurrent AF 
was significantly higher than in patients without recurrence, 
suggesting that LAD in patients with normal cardiac structure 
can be regarded as a useful indicator for predicting AF recur-
rence after ablation [50]. Mochizuki et al. evaluated 42 patients 
with paroxysmal AF and found that AF recurrence following ab-
lation was better predicted by the global strain of the left atrium 
as measured by 3D-STI than 2D-STI [51]. Both 3D-STI and 2D-STI 
have the potential to evaluate the structure and function of the 
left atrium in patients with AF and even predict AF recurrence. 
It is still unknown whether technique is preferable. 

While RT3DE displays the spatial structure, movement law, 
and adjacent relationship of the heart in real-time and 3D, 
with a focus on measuring the volume of the heart chamber, 
STI quantitatively analyzes atrial remodeling by measuring the 
strain and strain rate of the local atrial muscle. The value of 
RT3DE in evaluating the structure and function of the left atri-
um in patients with AF has been demonstrated, and the com-
monly used indicators evaluated are Left Atrial Volume (LAV), 
including minimum left atrium (LAV min), maximum (LAV max), 
and presystolic volume (LAV pre), left atrial volume index (LAVI) 
[52]. LAVI max>34 mL/m2 is regarded by the European Soci-
ety of Cardiology (ESC) as a sign of increased LA [53]. The pa-
rameters obtained by calculating the volume changes can also 
reflect the left atrial function, mainly including the left atrial 
enlargement index  (LAEI), which reflects the storage function, 
and the Left Atrial Active Ejection Fraction (LAAEF) and Total 
Ejection Fraction (LATEF) reflecting the auxiliary pump func-
tion, the Left Atrial Passive Ejection Fraction (LAPEF), which re-
flects conduit function, and the Left Atrial Function Index (LAFI), 
which reflects the overall function of the left atrium[54]. Jiang 
et al. combined 2D-STI with RT3DE to evaluate atrial remodel-
ing and functional changes in patients with AF accompanied by 
essential hypertension. They found that LAVI, LAEI, and LATEF 
improved significantly with treatment [54].  Zhang et al. used 
the RT3DE method to evaluate left atrial end-diastolic volume 
index (ILAEDV), End-Systolic Volume Index (ILAESV), and Left 
Atrial Ejection Fraction (LAEF) in 50 pairs of AF patients and 
healthy individuals, then compared it with Two-Dimensional 
Echocardiography (2DE). The results showed that ILAED and 
ILAESV were significantly elevated in AF patients, but overall 
LAEF was reduced. The conclusions reached by the two meth-
ods were consistent. These studies demonstrate that RT3DE 
is a feasible and accurate method for assessing left atrial vol-
ume and function in patients with AF [55]. In addition, RT3DE 
is valuable in assessing AF recurrence. Hongning et al. included 
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88 patients with AF who calculated the left atrial volume (max, 
min, and pre) and functional parameters by RT3DE and evalu-
ated the left atrium of AF patients with the minimum systolic 
volume time standard deviation (Tmsv-SD) at the end-diastolic 
stage synchronization. Results showed that whereas Tmsv-SD 
was significantly different in patients with AF recurrence, left 
atrial volume and functional parameters were not associated 
with AF recurrence. Thus, when we used RT3DE to evaluate left 
atrial, Tmsv SD in patients with normal left ventricular function 
and normal left atrium was a valid predictor of AF recurrence 
after radiofrequency ablation [56].

Cardiac Magnetic Resonance (CMR): Myocardial fibrosis is 
a significant marker of atrial structural remodeling. Advanced 
gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) is 
the gold standard for evaluating myocardial fibrosis. Marrouche 
et al. apply LGE imaging to conduct a multicenter prospective 
study among patients with persistent and paroxysmal AF. Ac-
cording to the percentage of atrial wall fibrosis as a percent-
age of the total atrial wall, the degree of left atrial fibrosis is 
divided into four grades (grade I: <10%, II: ≥10% and <20%, III: 
≥20% and <30%, and IV: ≥30%), showing that for every 1% in-
crease in fibrosis, the risk of AF recurrence increases by 6% [57]. 
Other studies have shown that for every 10 percent increase in 
LA-LGE, the risk of AF recurrence is 1.5-fold higher [58]. Cro-
chet et al. found that even years after successful resolution of 
persistent atrial fibrillation, the contractility and compliance of 
the left atrium were significantly impaired, and left atrial dys-
function was associated with atrial scar detected by LGE-CMR 
[59]. As for catheter ablation, the degree of atrial prefibrosis 
determines intervention success [60]. For the diagnosis and 
prognosis of atrial fibrillation, early and correct assessment of 
atrial fibrosis is crucial. A more complete picture of atrial he-
modynamic features is provided by four-dimensional magnetic 
resonance of the left atrial blood flow, which also helps in the 
prediction of intra-atrial thrombosis [61].

Electrocardiogram (ECG)

Left atrial abnormalities are associated with ischaemic stroke, 
and ECG can be noninvasive for assessment, especially as the 
P-wave index is valuable in predicting stroke. The detection in-
dicators include P-wave duration, the morphology of P waves in 
lower wall leads (II, III, aVF), the terminal potential of P-wave in 
V1 lead (PtfV1) reflecting atrial enlargement, and P-wave area 
[62]. Specifically, the P-wave duration ≥120 ms, the occurrence 
duration of a non-biphasic P wave or biphasic P wave ≥120 ms 
in the lower wall leads[63], PtfV1<-40 ms·mm [64]. The maxi-
mum P wave area quantified by ECG (max PWA) can be used 
as an index of left atrial remodeling, suggesting that left atrial 
enlargement is associated with a high risk of stroke [65]. In ad-
dition, P-Wave Dispersion (PWD) is also an ECG marker of atrial 
remodeling reflecting the heterogeneity and discontinuity of 
intra-atrial and interatrial conduction, which has great potential 
in the field of atrial fibrillation prediction [66].

Natriuretic Peptide family (NPs).

At present, some biomarkers are increasingly emerging di-
agnostic and prognostic tools, but we focus on NPs. NPs are a 
group of polypeptide hormones with similar structures but dif-
ferent origins, mainly including Atrial Natriuretic Peptide (ANP), 
Brain Natriuretic Peptide (BNP), and C-type Natriuretic Peptide 
(CNP), which can well predict ischemia, bleeding risk, the prog-
nosis of atrial fibrillation and the presence of myocardial fibro-
sis. 

ANP known as cardiac natriuretic, is mainly secreted by atrial 
muscle cells. Mid-anterior precordial natriuretic peptide (MR-
pro ANP) has been identified as a biomarker of cardioembolism 
and can be used to distinguish the origin of ischemic stroke 
from other subtypes [67]. Its stable nature can indicate an epi-
sode of atrial fibrillation at a high level [68]. Although ANP in-
creases in AF patients, studies have found that ANP level is low 
in patients with long-term AF [69], so its clinical application is 
worth further studying. 

BNP and NT-pro BNP are mainly secreted by ventricular my-
ocytes when pro BNP divides with a ratio of 1:1. Their values 
are elevated in patients with atrial fibrillation, perhaps due to 
loss of ordered atrial contraction and increased atrial pressure 
leading to ventricular filling disorder. At the same time, elevated 
ventricular rate leads to myocardial ischemia and uneven distri-
bution of blood oxygen, which stimulates ventricular-producing 
BNP [70]. Since NT-pro BNP has a longer half-life than BNP, high-
er levels better reflect the high risk of stroke and cardiovascular 
death? BNP level >251.2 pg/mL is an independent predictor of 
left atrial thrombosis [71]. Given the potential ability of NPs to 
reflect a dysfunctional atrial environment, it has been proposed 
that if NT-pro BNP is identified as a biomarker of ACM, it will 
further assist in the stratification of patients at risk of cardiovas-
cular events [72]. 

Besides, experiments have shown that CNP can inhibit car-
diac fibroblast proliferation, collagen synthesis, and myocardial 
fibrosis. Therefore it is inferred that elevated CNP may be con-
sidered as a compensatory mechanism for reversing myocardial 
fibrosis in atrial fibrillation [73].

Potential Therapeutic Targets and Therapeutic Approaches

Reverse left atrial remodeling can be defined as a reduction 
in left atrial volume and an improvement in left atrial strain 
function, which is also the goal of treating atrial failure [74]. In 
theory, the treatment method only needs to be able to fight any 
link in the mechanism of occurrence. 

Left atrial or biatrial pacing corrects electrical activity out of 
synchronization. Cardioversion, rhythm control, anticoagula-
tion, radiofrequency ablation, left atrial appendage emboliza-
tion for atrial fibrillation, thrombosis prevention, and ischemic 
stroke [75]. RAAS inhibitors (e.g. ACE inhibitors, ARBs, aldoste-
rone receptor antagonists) and inhibition of the TGFβ signaling 
pathway can effectively reduce cardiac fibrosis [30]. Cell trans-
plantation, alternative biomaterials, and direct reprogramming 
of fibroblasts to induce Cardiomyocytes (CMs) have shown effi-
cacy in animal models [30]. Bode et al. found that the SGLT-1&2 
inhibitor sopagliflozin can improve ACM-related LA remodel-
ing and arrhythmias by constructing a rat model of metabolic 
syndrome-associated ejection fraction-preserved heart failure 
(HFpEF), but the safety and efficacy of these results for human 
therapy require further clinical exploration [76]. The most cru-
cial thing is to prevent or correct risk factors that share com-
mon pathogenic conditions with atrial failure, such as hyper-
tension, obesity, sleep apnea, diabetes, etc. [77,78]. Therefore, 
we should incorporate primary and secondary preventive mea-
sures such as blood pressure control, weight loss, and physical 
exercise into the basic management of atrial failure [77]. 

Conclusion and Outlook

Atrial failure has become a new clinical concept and is the 
result of any structural and functional abnormalities of the 
atrium, including but not limited to primary atrial disease. The 
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development of atrial failure is significantly influenced by atrial 
fibrillation and atrial fibrosis. Recent advances in cardiac im-
aging, electrophysiology, and biomarkers have improved our 
comprehension the complex anatomy and functional character-
istics of the atria. They are important tools for assessing atrial 
structure and function. Atrial failure can be utilized as an early 
indicator of heart failure, because atrial remodeling and dys-
function are independently associated with heart failure and 
predate the onset of clinical heart failure symptoms [79]. We 
should realize that early identification and treatment of atrial 
failure have great potential in managing early heart failure. The 
current therapeutic strategy focuses on primary and secondary 
prevention, eliminating the cause, managing atrial fibrillation, 
and inhibiting fibrosis. As for other new therapeutic targets and 
approaches, we still need to explore them further. However, we 
believe that by deepening our understanding of atrial failure, 
we can better define and manage it in the future, and provide 
heart failure patients with timely-effective diagnosis and treat-
ment.
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