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Abstract

Hypertension is a very common disease and is often associated with left 
ventricular hypertrophy, obesity, diabetes and dyslipidemia. The consequences 
of hypertension involve coronary heart disease, heart failure, renal failure, stroke 
and exacerbation of the occlusive atherosclerotic coronary arterial disease. 
These disease states are associated with vascular structural and functional 
inflammatory changes including endothelial dysfunction, altered vasomotor tone, 
and vascular remodeling. However, whether vascular inflammation is a cause 
or result of hypertension is not well understood. Vascular inflammation and 
hypertension may share somecommon pathophysiological mechanism. In this 
review will show recent data concerning a potential link between inflammation 
and hypertension, including CRP, oxidative stress, RAS, prostaglandin, adaptive 
immune system, and Th17 activation by high salt intake, a major risk factor for 
developing hypertension. 
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Introduction
Hypertension is a major cause of morbidity and mortality 

worldwide. Over the past years, a plethora of information has 
established the diagnostic and prognostic value of various mediators 
of vascular inflammation in hypertension. However it is difficult 
to explain clearly what causes hypertension in human study. 
Many animal or in vitro models explain on the relation vascular 
inflammation and hypertension. This review focuses on the relation 
vascular inflammation and hypertension by the possible mediators, 
CRP (C-reactive protein), adaptive immune response, oxidative 
stress, RAS (renin-angiotensin-aldosterone system), prostaglandin, 
and Th17 activation by high salt intake (Figure 1).

CRP (C - Reactive Protein)
CRP is considered the inflammatory marker with the strongest 

association with hypertension. It has been demonstrated in 
numerous clinical trials that hypertensive patients commonly have 
increased plasma CRP levels [1]. Nonhypertensive offspring of 
hypertensive parents tend to have higher serum CRP levels than 
offspring of nonhypertensive patients [2]. Elevated HS-CRP is both 
a risk marker and risk factor for hypertension and cardiovascular 
disease [3]. Increases in HS-CRP (over 3μg/mL) may increase blood 
pressure in just a few days in dose dependent fashion [4]. Increases 
in high sensitivity CRP (HS-CRP) as well as other inflammatory 
cytokines such as interleukin-1B, (IL-1B), IL-6, tumor necrosis alpha 
(TNF-α) and chronic leukocytosis are observed in hypertension and 
hypertension-related target organ damages, such as increased carotid 
intima media thickness (IMT) [5]. CRP is an acute phase protein, but 
it also can stimulate monocytes to release proinflammatory cytokines 
such as interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and tumor 
necrosis factor alpha (TNF-α) and also acts on endothelial cells to 
express intracellular adhesion molecule (ICAM)-1 and vascular 
cell adhesion molecule (VCAM)-1, these effects further promote 
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inflammation. CRP is only marker for inflammation, what stimuli 
increases CRP and whether vascular inflammation increase CRP are 
not known.

Oxidative Stress
In human hypertension, biomarkers of systemic oxidative stress 

are elevated [6,7]. CRP levels also have been shown to correlate with 
the level of oxidative stress in inflammatory cells from hypertensive 
patients [8,9]. Nicotinamide adenine dinucleotide phosphate-oxidase 
(NADPH) oxidase is a major source of ROS in immune cells and 
also in the vasculature. Excessive ROS levels can also induce cellular 
damage by interacting with DNA, lipids, and proteins, which may 
further impair vascular structure and function [10]. Reactive oxygen 
species (ROS) is defined as oxygen with unpaired electron and highly 
active chemical. Superoxide anion (O2

-), hydroxyl radical (HO♦), 
hydrogen peroxide (H2O2), peroxynirtite (ONOO-) and lipid radical 
are classified ROS [11]. In cellular matrix or membrane, in addition 
to NADPH oxidase, xanthine oxidase, cyclooxygenase, lipoxygenase, 
NO synthase, hemeoxygenase, peroxygenase, or heme protein are 
potential enzymes to produce ROS. In vascular endothelial cells, 
eNOS which is a cytochrome P450 reductase-like enzyme is important 
source for ROS. eNOS utilizes tetrabiopterin (BH4) to produce NO 
from L-arginine and under deficiency of L-arginine or BH4, eNOS 
produces O2

- or H2O2. Physiologically, ROSs are produced in a 
controlled manner at low concentrations and function as signaling 
molecules to maintain vascular integrity by regulating endothelial 
function and vascular contraction-relaxation balance. ROS activates 
Ca2+ signal, tyrosine kinases or mitogen-activated protein kinases 
(MAPK) by non-genomic action and increases expression of MCP-
1, VCAM-1, ICAM-1 and atherogenic genes by genomic action via 
activating NF-κB. Under pathological conditions, increased ROS 
bioactivity leads to vascular inflammation which isan essential 
pathophysiological mechanism in the development of hypertension.
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Oxidized LDL
Oxidized LDL is produced by oxidation of low density 

lipoprotein (LDL) and its oxidation is caused by peroxyradical and 
radical chain reactions. Source of ROS are leukocytes, macrophage, 
endothelial cells as well as vascular smooth muscle cells. Oxidized 
LDL increases MCP-1 secretion from endothelial cells and further 
induces monocyte and macrophage infiltration into vasculature 
[12]. Lectin-like oxidized low-density lipoprotein receptor (LOX-1) 
mRNA expression is minimal in the aorta from normotensive rats, 
but is markedly up-regulated in spontaneously hypertensive rats 
and salt-loaded Dahl salt-sensitive rats, suggesting a correlation 
between LOX-1 and hypertension [13]. However, there has been little 
information on the relationship between LOX-1 and hypertension 
in humans. In a study of healthy workers, serum LOX-1 ligand 
containing ApoB (LAB) level was correlated with only diastolic but 
not systolic blood pressure [14]. LOX-1 is also regulated by oxidative 
stress [15,16], and oxidized LDL induces ROS via LOX-1, therefore 
there are vicious cycles among ROS [17]. Cellular and organ damages 
by Oxidized LDL-induced ROS are not limited in endothelial cells 
but cardiomyocyte remodeling after ischemia or inflammation and 
fibrosis in the kidney [12].

Adrenomedullin
The endogenous and exogenous antioxidants that have 

demonstrated an ability to alter the function of blood vessels 
and participate in the main redox reactions involved in vascular 
inflammation. Adrenomedullin (AM) was identified by Kitamura 
in 1993 as a potent vasodilating peptide [18] and the studies using 
its deficient mice model revealed that AM is a potent intrinsic 
antioxidant. Plasma adrenomedullin concentrations are elevated in 
many hypertensive patients [19]. In AM deficient mice, overall ROS 
marker, 8-isoprostaglandin F2 excretion is high and angiotensin 
II plus salt loading induced local ROS production in the heart and 
marked pericoronary fibrosis and narrowing independent from 
blood pressure [20]. In other model, cuff-induced vascular damage 
was reduced by topical administration of AM via viral vector and 
this effect was in parallel with reduction of ROS [21]. These models 
are closely related local or systemic renin-angiotensin system which 

is a strong inducer of NADPH oxidase and oxidative stress. In vitro 
experiments showed that AM interfere with angiotensin II signaling 
and inhibits NADPH oxidase activity [22].

Antioxidants and hypertension
Antioxidants for hypertension are the study of, in which a peptide 

inhibitor of the NADPH oxidase was shown to lower blood pressure 
and to prevent macrophage accumulation [23]. Roson et al showed 
that the acute infusion of sodium caused an increase in renal levels 
of chemokine ligand 5 (RANTES), NFκB, HIF1a, and angiotensin 
II in rats, and that superoxide dismutase (SOD) mimetic, Tempol, 
markedly reduced these responses [24].The above mentioned intrinsic 
antioxidants are scavengers and also exogenous antioxidants are 
studied for long time in human. Vitamin C is a potent water-soluble 
antioxidant. On the vascular wall behaves as enzyme modulator 
exerting up-regulation on eNOS and down regulation of NOX [25] 
Nevertheless, there are several clinical trials in which the effect of 
vitamin C supplements on blood pressure have yielded inconsistent 
findings [26]. Recently cholesterol lowering drugs, probucol 
and statins are reported to have antioxidant property as their 
pleiotropic effects [27]. However, the dietary intake of antioxidants 
and polyphenols could have an effect in the primary prevention or 
reduction of hypertension. [28]. There are some reports that those 
exogenous ROS scavengers are effective in preventing hypertension, 
but there remain controversial reports [29].

RAS (Renin-Angiotensin System)
Angiotensin II and Aldosterone are well known to the renin-

angiotensin system (RAS), they are strongly inducer for vascular 
inflammation. RAS plays a crucial role in the initiation and 
maintenance of vascular inflammation and vascular remodeling 
[30]. Vascular inflammation leads to endothelium dysfunction. 
A dysfunctional endothelium is leaky and facilitates migration of 
inflammatory cell into the vascular wall and stimulates smooth 
muscle cells proliferation. 

Angiotensin II
More convincing support has been provided by the use of ACE 

Figure 1: Schematic diagram illustrating the relationship between vascular inflammation and hypertension. Working hypothesis describing hypertensive stimuli 
(white circle) induces vascular inflammation. RAS: renin-angiotensin-aldosterone system.
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inhibitors in recent clinical trials in which profound effects of ACE 
inhibitors on reducing cardiovascular events were seen. Angiotensin 
receptor blockers (ARBs) may also reduce inflammation not only 
decrease blood pressure [31]. In animal model, acute treatment with 
Ang II significantly increases inflammatory changes, leukocytes 
adhesion in mesenteric arteries [32]. Moreover, animal and human 
studies show that Ang II induces proinflammatory responses in 
arteries, heart, and kidney by regulating the expression of cytokines 
and chemokines. Macrophages are components of the innate 
immune system, and are poised to respond to non-specific stimuli, 
such as might be present in the tissue damage induced by angiotensin 
II [33]. It is also now well-established that Ang II activates NADPH 
oxidases in VSMCs, monocytes, macrophages, and endothelial cells 
to produce reactive oxidant species [34]. In the setting of Ang II-
induced hypertension, higher levels of subunit of NADHP oxidase 
expressions, including p47phox, p22phox, and NOX2, components 
of NOX2 oxidase. Furthermore, adoptive transfer of T cells deficient 
in NADPH oxidase results in lower superoxide production and blood 
pressurein response to Ang II [35]. 

Aldosterone
Clinical studies indicate that the prevalence of hyperaldosteronism 

may be increased in resistant hypertension, that aldosterone 
concentrations “escape” to pretreatment levels during chronic 
treatment of congestive heart failure or hypertension with an 
Ang-converting enzyme (ACE) inhibitor or Ang receptor blocker 
(ARB) [36]. Seminal studies in rat models demonstrated that MR 
activation causes perivascular and interstitial fibrosis [37]. Rocha 
et al., demonstrated that treatment with aldosterone and salt 
caused extensive inflammatory arterial lesions with perivascular 
macrophages in the heart [38]. MR antagonism decreases aortic 
inflammation, fibrosis,and hypertrophy in hypertensive rats 
[39]. However, the heart and the vasculature do not have enough 
expression of 11β hydroxysteroid dehydrogenase type II, there are 
some reports the genomic activation by the mechanism of Aldo binds 
MR and expresses its pro-inflammatory action without glucocorticoid 
deactivation [40]. Despite lowering plasma aldosterone, salt worsens 
renal injury by paradoxical activation of the mineralocorticoid 

receptor (MR) [41]. Fujita et al showed two pathways involving 
aldosterone-MR and renal SNS-GR that contribute to an impaired 
capacity to excrete sodium [42-44].

Like Ang II, aldosterone activates NADPH oxidases in rat VSMCs 
[45]. Increased oxidative stress activates the redox sensitive NF-κB, 
and triggers inflammation. Hence, aldosterone-stimulated activation 
of vascular inflammation by oxidative stress and NF-κB. Besides rac1, 
a component of NADPH oxidase, can translocate mineralocorticoid 
receptor into nucleus independent from aldosterone and exerts its 
genomic effect to induce its target gene transcription such as sgk1 
[42]. This indicates that oxidative stress can activate mineralocorticoid 
receptor in organs even aldosterone level is low [46,47]. It implies that 
mineralocorticoid receptor blockade and reduction of salt intake are 
possibly effective in reducing inflammation and preserving vascular 
function in hypertensive patients [48].

Prostaglandins
A number of animal studies and observations in human 

hypertensive subjects suggest that the prostaglandin system plays 
a role in the pathogenesis of hypertension. Inflammation activates 
phospholipase A2 (PLA2) to release Arachidonic Acid (AA), whose 
metabolism by cyclooxygenases (COXs) generates prostaglandins 
(PGs). PGs normally have an antihypertensive action. Prostacyclin 
(PGI2) inhibits platelet aggregation and vasoconstriction. PGI2 
synthase (PTGIS), a catalyst of PGI2 synthesis from prostaglandin 
H2, is widely distributed and predominantly found in vascular 
endothelial and smooth muscle cells. However, PGH2 (prostaglandin 
endoperoxide), thromboxane (Tx)A2 generated by TxA2 synthase 
(TxA2-2), and isoprostanes (Iso) can constrict blood vessels [49] 
(Figure 2). Recent animal studies have shown that PGI2 may, in fact, 
paradoxically induce vasoconstriction rather than vasodilatation 
in certain circumstances. In the aortic rings from SHR and aged 
Wistar Kyoto rats, the endothelium dependent contractions elicited 
by acetylcholine most likely involve the release of PGI2 with a 
concomitant contribution of PGH2 [50] In previous studies, mice 
deficient in the prostaglandin E2 (PGE2) EP2 receptor is low in 
resting systolic blood pressure (BP) than that of wild-type controls 

Figure 2: Schematic diagram illustrating synthesis and metabolism of Eicosanoid. The prostaglandins (PG), thromboxanes (TX), and lipoxygenase and 
epoxygenase products are collectively called eicosanoids. Arachinoid Acid (AA) is released from cell membrane phospholipid by phospholipases (PLAs) and 
metabolized Prostagrandin H2 by the sequential actions of prostaglandin G/H synthase, or cyclooxygenase (COX), and respective synthases. Anti-inflammatory 
drugs (Asprin, NSAID, Corticosteroid, COX-2 inhibitor) inhibit COXs (COX-1,2) activation.
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[51]. The BP of those mice increased blood pressure when they 
were put on a high-salt diet, suggesting that the EP2 receptor is 
involved in sodium handling inthe kidney [52]. We analyzed three 
single-nucleotide polymorphisms (SNP) in the human PTGER2 
gene the A/A type of the SNP rs17197 (rs17197, A/G in 3’UTR) was 
significantly more frequent in EH subjects than in NT subjects [53]. 
Synthesis of PGI2 is enhanced in the spontaneously hypertensive and 
Gold blat hypertensive rat [54]. We and other group identified several 
mutations in the human PGI2 synthase (PTGIS) gene in a family with 
a history of essential hypertension, but haplotype of PTGIS genes 
were not associated in essential hypertension [55-62]. Metabolism of 
PGE2, PGF2-α, and PGI2 by prostaglandin 15-hydroxydehydrogenase 
is impaired in hypertensive genetic models [63]. In either case, 
prostanoids cause both prohypertensive and antihypertensive effects 
by acting on blood vessels.

COX inhibitors
Cyclooxygenase (COX) catalyzes the synthesis of prostaglandins 

(PGs) from arachidonate. The cyclooxygenase-derived prostanoids 
(e.g., PGE2, PGF2_, PGD2, PGI2, thromboxane A2) are generated 
by either the largely constitutive isoform COX-1 or by the inducible 
isoform COX-2. Two isozymes encoded by different genes, cox1and 
cox2, mediate this process. Accumulating evidence indicates COX-1 
and COX-2 activity differentially influence renal and cardiovascular 
function. For example patients receiving a selective COX2 inhibitor 
exhibited an increased incidence of thrombotic cardiovascular 
events and hypertension [64]. In addition to the well-recognized 
gastrointestinal toxicity caused by nonspecific COX inhibitor 
(NSAIDs), these agents have also been found to produce a mean 
increase in blood pressure of 5.0mm Hg [65]. In contrast, low-dose 
aspirin, which primarily inhibits COX1, can lower blood pressure in 
healthy subjects with mild hypertension, [67,68]. Future studies are 
needed to assess the effect.

Adaptive Immune Response 
Several recent investigations have further defined the role 

of immune system. Particularly the adaptive immune system, 
in hypertension, provided novel insights into the genesis of 
hypertension, and identified novel targets for the treatment of 
hypertension [69]. The first line of defense against pathogens is the 
innate immune response. In contrast to the innate immune system, 
the adaptive immune system is highly specific. Grollman et al., 
showed that immunosuppression attenuates hypertension in rats 
[70]. Ba et al. found that transplanting the thymus from a Wistar- 
Kyoto (WKY) rat to a spontaneously hypertensive rat (SHR) resulted 
in a decrease in blood pressure in the SHR [71]. Based upon this 
finding, more in precise mechanism how immune responses by either 
T and B cells regulate blood pressure has been studied. Mice lacking 
recombinase-activating gene 1 (Rag-1_/_ mice) cannot generate 
functional T cell receptors or B cell antibodies and thus lack both T 
and B lymphocytes [35]. The increase in blood pressure caused by 
either Ang II or DOCA salt was significantly blunted in Rag-1_/_ 
mice, suggesting that either T or B cells mediate overt hypertension. 
Rag-1_/_ mice did not exhibit increased vascular superoxide 
production and endothelial dysfunction. This results shows that T 
cells play a major role in hypertension. Several recent studies suggest 
a vascular protective effect of T regulatory cells, much in the same 

way that these cells may provide renal protection [72]. An association 
between vascular inflammation and T regulatory cells was initially 
described in salt-sensitive hypertension by comparing vascular 
inflammatory markers and T cells in Dahl rats with chromosome 2 
from the Brown Norway rat in which regulatory T cell function is 
suppressed by increased FOXP3. The congenic rats exhibited reduced 
vascular inflammation and increased vascular expression of Foxp3, a 
transcription factor specific to T regulatory cells [73]. In other study, 
either mineralocorticoid or AngII-dependent hypertension model, 
adoptive transfer of T regulatory cells blunts the hypertension and 
prevents the development of impaired mesenteric artery function 
and remodeling [74]. Immune cell in the conduit vessels might 
be an important factor for what is occurring in resistance vessels, 
especially the renal microvasculature, as a mechanism to promote the 
development of hypertension.

T Cell Activation by Salt
The relevance of the renal inflammation in the pathogenesis 

of Salt Sensitive Hypertension (SSHTN) is underlined by the 
demonstration that treatments that suppress the renal inflammation 
result in amelioration or prevention of salt-driven hypertension. 
The connection between sodium intake and health is manifested by 
the relationship between sodium intake and blood pressure. Several 
studies revealed salt sensitive animal models showed inflammation 
in the kidney and changed inflammatory gene expressions [75]. Salt-
sensitive hypertension with increased renal inflammation as a result 
of T cell imbalance, dysregulation of CD4+and CD8+lymphocytes 
and chronic leukocytosis with increased neutrophils and reduced 
lymphocytes [76]. 

Patients with hypertensive nephrosclerosis have higher renal 
infiltration of CD4+ and CD8+ T cells than normotensive control 
patients. Furthermore, circulating levels of chemokines have been 
reported to be elevated in hypertensive patients [77]. Pro-inflammatory 
cytokine Interlaukin-17 (IL-17) contributes hypertension [78]. IL-
17 is produced by Th17cells.Two recent studies collectively suggest 
that excess sodium drives autoimmunity at the cellular level [79,80]. 
One group of researchers had showed increased Th17 cell numbers 
in the blood of people who consumed high salt diet, they conducted 
experiments on the effects of elevated sodium concentrations on the 
differentiation of immature human T cells into pathogenic Th17 
cells. They indeed found that high sodium concentrations drove 
a dramatic increase in differentiation into pathogenic Th17 cells in 
vitro. To strengthen these findings, they fed mice predisposed to a 
Th17-related autoimmune disease either a standard or high-salt diet. 
The high-salt diet accelerated the development of the autoimmune 
disease, and the symptoms were more severe on the high-salt diet 
than on the standard diet.

Conclusion
The recent studies have shown the relevance of inflammation and 

hypertension, including its mediators. C-Reactive Protein (CRP) is 
considered the inflammatory marker with the strongest association 
with hypertension. Oxidative stress, RAS are known to be associated 
with inflammation and can contribute to hypertension. T-cells 
activation at least in part elevate blood pressure by exacerbating 
autoimmune response in vasculature and possibly in the kidney.
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However, some anti-inflammatory drugs (NSAID or COX-2 
inhibitor) paradoxically cause hypertension in human. Because 
immunosuppressants can have serious side effect (such as sodium 
retention, inhibit angiogenesis).Clinical studies investigating anti-
oxidant supplements have failed to show any consistent benefit. 
Most clinical studies on anti-oxidants were not enough to scavenge 
oxidative stress and it also become free radical in body, if there were 
pro-oxidant conversion. New anti-inflammatory drugs could be used 
for prevent hypertension, or vascular inflammation in future. 
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