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Abstract

Tea contains antioxidant catechins thought to exert health-promoting 
protective effects against conditions involving chronic inflammation, such as 
cardiovascular diseases. The most abundant catechin in tea is Epigallocatechin 
Gallate (EGCG), thought to be a key contributor to tea’s health-promoting 
actions. EGCG exerts protective cardiovascular effects via its antioxidant, anti-
inflammatory, hypolipidemic, anti-thrombogenic, and anti-hypertensive actions. 
Because EGCG inhibits the strong proinflammatory gene-inducing transcription 
factor NF-κB, we analyzed the chemical and molecular details of the mechanism 
by which EGCG mediates NF-κB inhibition. We quantified and mapped key 
parameters of its chemical reactivity including its electrophilic Fukui ƒ+ function, 
in silico covalent binding, and identified its frontier Molecular Orbitals (MOs) and 
nucleophilic susceptibility. These physical and chemical reactivity parameters 
revealed that the bond-forming MOs are distributed on the B ring of the EGCG 
oxidized state with nucleophilic susceptibility, and that this B ring has properties 
that favor participating in a Cys-alkylating 1,4-addition reaction. Molecular 
modeling and docking analysis further revealed that EGCG bonds covalently 
with Cys-38 of NF-κB-p65, and thereby inhibits its DNA binding ability. We also 
generated a model pharmacophore based on the EGCG-NF-κB complex. We 
conclude that EGCG covalently binds to NF-κB-p65 and inhibits it by abolishing 
its DNA binding, by chemical mechanisms that may inform design of EGCG 
derivatives as novel anti-inflammatory agents.
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Introduction
 Cardiovascular Diseases (CVDs) are the leading cause of death 

worldwide, and will give rise to a predicted increase in annual deaths 
from 17.5 million in 2012 to 22.2 million by 2030 if current trends 
persist [1]. CVDs including congestive heart failure, stroke, ischemic 
and coronary heart disease, coronary artery disease, and peripheral 
vascular disease [2] inflict high societal costs, and >75% of deaths in 
countries of low and middle incomes. Worldwide, millions of people 
strive to control CVD risk factors, while others are unaware of the risks 
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[3]. Inflammation and apoptosis are major pathogenic contributors 
to these conditions, and induction of many of the pathways involved 
is heavily mediated by activation of the transcription factor nuclear 
factor-κB (NF-κB) [4]. CVDs in which NF-κB activation plays an 
essential pathogenic role include myocardial infarction [5], ischemia/
reperfusion injury [6], transplant rejection [7], angina pectoris [8], 
autoimmune myocarditis [9], congestive heart failure [10], and 
cardiomyocyte hypertrophy [11]. Therefore, modulators of NF-κB 
activity can influence these conditions.

NF-κB consists of a group of structurally-related transcription 
factors including NF-κB1 (p50/p105), NF-κB2 (p52/p100), RelA 
(p65), RelB, and C-Rel, each characterized by a highly conserved Rel 
homology domain (RHD), the domain which regulates its interaction 
with inhibitory κB proteins (IκBs), dimerization, and DNA binding 
to evoke changes in target gene expression [12]. Interactions 
among NF-κB family members lead to formation of homodimers 
or heterodimers, among which the most abundant and well-
characterized is the p50/p65 heterodimer [13]. The p50/p65 dimer 
interacts with consensus DNA sequences known as κB motifs, which 
are located in promoter or enhancer regions of target genes, and 
consist of 5′-GGGRNNYYCC-3′, where R is an unspecified purine, 
Y is an unspecified pyrimidine, and N is any nucleotide [14]. As a 
result of its activation by cytokines, pathogens, and other stressful 
conditions, NF-κB induces production of numerous inflammatory 
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mediators including cytokines, chemokines, adhesion molecules, 
inducible enzymes, and growth factors [15,16]. A highly conserved 
cysteine residue (Cys-38 in human NF-κB-p65 RHD) is required 
for its interaction with κB DNA [17]. Several natural and synthetic 
antioxidant compounds that contain functional electrophilic carbons 
can inhibit NF-κB DNA-binding activity, by alkylating Cys-38 [18] 
via a 1,4-addition (S-alkylation) reaction [19].

Antioxidant polyphenolic catechins are present in many nutrient-
rich foods, such as fruits, berries, and leaves (especially tea), and 
their health benefits via such antioxidant properties have been well-
established by in vivo and in vitro studies (reviewed in [20]). Many 
such beneficial antioxidant activities are attributed to flavonoids that 
contain dihydroxy or trihydroxy groups, and their antioxidant activity 
further increases with increasing content of these groups [21-23]. 
Among the catechins in tea, the most abundant is epigallocatechin 
gallate (EGCG; C22H18O11) is [24], which can covalently modify 
proteins and alter their functions [25-27]. Such chemical activities of 
EGCG reside in its two adjacent trihydroxy structures, the B (gallyl) 
and D (gallate) rings. These can readily undergo auto-oxidation to 
form a semiquinone that then rearranges to an electrondeficient 
and electrophilic β-carbon (Cβ)- containing O-quinone, which 
is susceptible to nucleophilic attack by thiols. Such electrophilic-
nucleophilic attack forms EGCG-S-cysteinyl protein adducts.

EGCG exerts cardiovascular protection via its antioxidant, 
anti-inflammatory, hypolipidemic, anti-thrombogenic, and anti-
hypertensive actions [28]. Antioxidant properties of catechins 
include free radical scavenging [29], metal ion chelation [30], 
inhibition of redox responses, and induction of antioxidant enzymes 
[31]. EGCG-mediated inhibition of NF-κB via multiple mechanisms 
[20] contributes to its anti-inflammatory activities. Catechins in 
tea also improve blood lipid profiles, regulate vascular tone, and 
impede progression of atherosclerotic lesions, by inhibiting cytokine 
production, inflammatory cell transmigration, platelet adhesion, 
and vascular smooth muscle cell proliferation [reviewed in [28]]. 
Experimental and clinical studies identified protective roles of 
EGCG in CVDs [32], attracting attention toward developing novel 
therapeutic strategies targeting Nrf2 activation and NF-kB inhibition 
[33].

We recently found that EGCG selectively and covalently binds 
to cysteinyl thiol of NF-κB via 1, 4-addition reaction and effectively 
suppresses its activation. The cysteine found as the reactive 
sulfhydryl moiety as S-carboxymethylation blocked the 1, 4-addition 
reaction between EGCG and NF-κB [34]. Based on our previous 
findings and EGCG’s biochemical properties, we hypothesized 
that EGCG covalently binds to NF-κB and inhibits NF-κB-p65’s 
DNA binding ability. To test this idea we analyzed the operant 
mechanisms and explored the potential for targeting the relevant 
sites pharmacologically for therapeutic benefits, by characterizing 
EGCG’s chemical reactivity and electrophilicity. We found that 
its oxidized B ring contains proton donating O-quinones and Cβs, 
which therefore readily undergo chemical reactions. Herein we 
describe further analyses of the frontier Molecular Orbitals (MOs), 
nucleophilic susceptibilities, molecular modeling and docking, and 
identified a new putative pharmacophore based on the EGCG-NF-
κB complex. These findings will inform further in silico and in vitro 
research to enable design of novel EGCG derivatives as potential NF-

κB inhibitors. 

Materials and Methods
Computational methods

Structures of EGCG in the reduced state (EGCG-RS; C22H18O11) 
and oxidized state (EGCG-OS; C22H16O11) were generated in 
ChemOffice (v 17.0, CambridgeSoft, Cambridge, MA, USA). 
Geometric optimizations and all electronic structure calculations 
were performed as we described [35], using Density Functional 
Theory (DFT) by Local Density Approximation (LDA) exchange-
correlation and the QZ4P base set with Amsterdam Density 
Functional (ADF) Modelling Suite [36]. The critical points, bond 
paths, atomic properties and energies, and reactivity indices were 
analyzed via the Quantum Theory of Atoms in Molecules (QTAIM) 
proposed by Bader, as implemented in ADF. For semi-empirical 
quantum chemical calculations we used using Parameterization 
Method 6 (PM6) as implemented by SCiGRESS (v 2.8.1, Fujitsu 
Ltd., Tokyo, Japan). The resulting parameters, Energies of Highest 
Occupied Molecular Orbital (EHOMO), and Lowest Unoccupied 
Molecular Orbital (ELUMO) values were used in standard equations, to 
determine global chemical reactivity descriptors including hardness 
(η), chemical softness (σ), chemical potential (μ), electrophilicity (ω), 
nucleophilicity (ω-), and local reactivity descriptors including the 
Fukui functions (ƒ+ and ƒ-), Koopmans DD, and philicities. 

Molecular modeling
We selected the X-ray structure 1vkx [14] from the RCSB Protein 

Data Bank to build docking receptors. NF-κB-p65/p50 heterodimer 
complexed with κB DNA, its C38S mutant (the cysteine at the residue 
38 was substituted with a serine), p65 wild-type subunit, and p65 
C38S mutant subunit with BIOVIA Discovery Studio (BIOVIA, 
San Diego, CA, USA). Energy minimization (constraining the 
heavy atoms) analysis was performed using Chemistry at HARvard 
Macromolecular Mechanics (CHARMM) force fields [37].

Molecular docking
Molecular docking studies were carried out as we described 

[38] with Discovery Studio. Briefly, the geometry-optimized EGCG 
structure, generated based on DFT was used as a ligand. The energy-
minimized three-dimensional structures and complexes (as described 
above) were used as receptor molecules to model covalent docking. 
We further characterized the lowest energy pose of the covalent 
EGCG-p65 wild-type complex to determine ring conformation 
changes and generate a pharmacophore model using the receptor-
ligand complex based-common features mapping model.

In vitro electrophilic addition reaction
To determine the EGCG covalent adduction of NF-κB and the 

involvement of Cys residue an in vitro electrophilic adduction was 
performed as we described previously [34]. Briefly, unmodified NF-
κB-p65 recombinant protein or S-carboxymethylated NF-κB-p65 
protein was incubated with various concentrations of biotin taged 
EGCG. After incubation the formation of the covalent adduction was 
determined by Western blotting as we previously reported [38].

Nucleic acid–protein docking
We analyzed DNA-protein docking studies as we described 

[39] to identify interactions between EGCG-bound NF-κB and κB 
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(5′-TGGGGACTTTCC-3′) in the nucleic acid-protein docking (NP 
Dock) server as described [40], with default docking parameters. We 
set the RMSD threshold 5 Å for clustering, and used the best-scored 
decoy in the clusters with the highest probability to identify DNA–
protein interactions using Discovery Studio Visualizer.

Results
Calculated chemical properties of EGCG 

We determined electrophilicity of EGCG-RS (Figure 1A) and 
EGCG-OS (Figure 1B) by quantum chemical calculations. We 
analyzed chemical properties including chemical hardness (η), 
chemical softness (σ), chemical potential (μ), electrophilicity (ω), 
and nucleophilicity or reactivity (ω-) indices (Tables 1 and 2). The 
data in Table 1 indicate that EGCG-OS is softer (σ: 0.278 eV-1), more 
reactive (μ: -5.900 eV), and more highly electrophilic (ω: 4.835 eV) 
than EGCG-G.

Table 2 shows that the reactivity indices for EGCG-OS with either 
nucleophile (Cys-S-; thiolate and CysSH; neutral) were higher than 
that of EGCG-RS, defining the oxidized EGCG, which contains an 
electrophilic Cβ, as the more likely chemical EGCG form to target 
biological nucleophiles such as protein thiolates.

Calculated charge distributions of EGCG
We characterized the charge distribution and bonding nature of 

the MO by analyzing Mulliken charges derived from the molecules’ 
Mulliken population. Figure 2 shows the EGCG-RS and EGCG-

OS atoms, color-coded according to their calculated Mulliken 
atomic charge populations. Oxidation of O-diphenolic rings in 
EGCG generates corresponding highly electrophilic O-quinones, 
with negative charges (bottom colors in Figure 2 Mulliken scales) 
distributed uniformly across the oxygen atoms of phenolic OH 
groups (Figure 2). The B ring Oquinones have lower Mulliken charge 
values than the D ring O-quinones, indicating that the former are 
potentially proton donors, and preferred, more efficient sites of 
chemical reactions (Figure 2).

Frontier Molecular Orbitals (MOs) of EGCG 
To determine the electronic structure and MOs, we used Density 

Functional analyses of EGCG-RS and EGCG-OS, using the QZ4P 
base set, which is better-polarized than the other basis sets, and 
encompasses an additional diffuse function. Because Cys-38 in NF-
κB-p65 is theoretically a target for 1,4-addition (Michael) reaction, 
we tested its propensity as such by analyzing electronic structure. In 
Michael reactions, the electrophilic Cβ forms a covalent bond with 
a nucleophile, mainly with the thiols of Cysteine Residues (Cys) of 
cellular peptides and proteins. A covalent bond is formed when the 
electron-donating HOMO of a nucleophile (Cys Sγ) overlaps with 
electron-withdrawing LUMO of the electrophile (Cβ) [35, 41]. The 
distributions of HOMO (Figure 3A; red and blue isosurface of 0.06 

Figure 1: Chemical structures of EGCG. Structures of (A) EGCG-RS 
(C22H18O11) and (B) EGCG-OS (B′ ring), drawn using ChemOffice. Figures 
were generated with Chem3D. The potential site for 1,4-addition is indicated 
by red asterisk (*).

Molecule η (eV) σ (eV-1) μ (eV) ω (eV)

EGCG (RS) 4.1 0.244 -5.16 3.247

EGCG (OS) 3.6 0.278 -5.9 4.835

Table 1: Calculated quantum mechanical parameters of EGCG. Abbreviations: η, 
chemical hardness; σ, chemical softness; μ, chemical potential; ω, electrophilicity 
index.

Electrophile Nucleophile ω- (eV)

EGCG (RS)
Cys-SH 0.005

Cys-S- 0.0924

EGCG (OS)
Cys-SH 0.045

Cys-S- 0.2156

Table 2: Calculated nucleophilicity (reactivity) index for Cys (biological 
nucleophile) with EGCG electrophiles. Abbreviation: ω-, reactivity index.

Figure 2: Mulliken atomic charge populations of EGCG. Geometry-
optimized structures of (A) EGCG-RS and (B) EGCG-OS colored according 
to Mulliken atomic charges as represented in the color scale. Figures were 
generated with ADF.

Figure 3: Frontier molecular orbitals (MOs) of EGCG. Geometry-optimized 
structures of EGCG-RS and EGCG-OS showing (A) HOMO (red and blue 
isosurface; 0.06 au) and (B) LUMO (orange and cyan isosurface; 0.06 au) 
distribution. Figures were generated with ADF.
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au) and LUMO (Figure 3B; orange and cyan isosurface of 0.06 au) 
we found in EGCG-RS and EGCG-OS indicate that LUMOs are 
distributed on the B ring in the EGCG-OS containing O-quinones, 
which act as the electrophilic Cβ. In contrast, in EGCG-RS, we found 
they are distributed across the C and D rings, indicating the B ring 
is a potential site of nucleophilic attack. Proton abstraction from 
the oxygen atoms requires smaller energy than the energy (8.82 
eV) required for oxygen ionization. These results indicate that the 
1,4-addition reaction of EGCG with Cys-38 of NF-κB-p65 occurs 
primarily on the B ring.

Electrophilicity and Nucleophilic index of EGCG 
In addition to identifying chemical descriptors and MOs, we 

analyzed chemical reactivity of EGCG in terms of electrophilicity and 
susceptibility (Figure 4). Electrophilicity per atom was determined by 
condensed Fukui Functions (also called atomic Fukui indices), which 
quantify the electron density after adding or removing a charge. 
We set the charge change parameter to 1 in these calculations. For 
an electrophile, an atom with high Fukui ƒ+ (Fukui function for the 
nucleophilic attack) value is the one most susceptible to nucleophilic 
attack.

As shown in Figure 4A, the highest Fukui values are distributed 
on the O-quinones of the B ring in EGCG-OS. After determining 
MOs, we generated a three-dimensional electron density isosurface of 
EGCG to identify the reactive centers. The van der Waals isosurface 
of EGCG with relative reactivity is shown in Figure 4B. The surface 
color indicates susceptibility to nucleophilic attack (with relative 
reactivity red>blue). These results indicate that the B ring of oxidized 
EGCG is chemically reactive and is susceptible to nucleophilic attack.

Molecular interactions of the EGCG-NF-κB-p65 complex
To determine the nature of chemical interaction of EGCG with 

NF-κB-p65, and within that the potential role of NF-κB-p65 Cys-38, 
we modeled and docked different EGCG-NF-κB complexes. Figure 
5 shows the lowest-energy pose of each complex, in which EGCG 

occupied a groove on the NF-κB-p65 receptor. The complex consists 
of three hydrogen (H) bonds and various hydrophobic interactions, 
as shown in 2D-ligand interaction plots. The oxygen atom of the 
hydroxyl groups in the D ring (galloyl moiety) forms H bonds with 
the atoms of Tyr-36, Lys-123, and Arg-124. Electrostatic interactions 
also contribute to EGCG’s binding. For example, electrondense B and 
D rings interact with positively-charged amino acids such as Lys-122. 
The nitrogen atom of the Lys-122 side chain is closely positioned to 
the oxygen atom of a D ring. EGCG also interacts with several nearby 
amino acids via van der Waals and hydrophobic interactions, shown 
in Figure 5C-5D.

EGCG only formed a covalent bond with the wild-type NF-
κB-p65 complex (Figure 5A and 5C.; indicated by red arrowhead), 
and covalent interaction was abolished by C38S mutation in the NF-
κB-p65 C38S mutant complex (Figure 5B and 5D). In the covalent 
conformation (Figure 5A and 5C), the electrophilic Cβ in the EGCG’s 
B ring was separated by ~2 Å from the sulfur atom (Sγ) of Cys38, a 
distance favorable for a 1,4-addition reaction. These results indicate 
that EGCG covalently binds to NF-κB-p65, via Cys-38. 

EGCG-NF-κB-p65 form a Cys covalent adduct
We next tested the covalent adduction between EGCG and 

NF-κB-p65 by performing an electrophilic addition reaction assay. 
We found that EGCG covalently and dose-dependently interacts 
with NF-κB-p65 and the interaction was competed by unlabeled 
EGCG. Additionally, the interaction was abolished in the presence 
of diamide an oxidizing agent, demonstrating the covalent nature of 

Figure 4: Chemical reactivity of EGCG. Geometry-optimized structures 
of EGCG-RS and EGCG-OS showing (A) Fukui ƒ+ distribution colored 
to indicate Fukui ƒ+ value, generated with ADF software; and (B) electron 
density surface (0.01 au) colored to indicate nucleophilic susceptibility, 
generated using SCiGRESS.

Figure 5: Molecular modeling and docking of the EGCG-NF-κB-p65 
complex. Molecular models of EGCG bound to (A) NF-κB-p65 wild-type 
subunit and (B) NF-κB-p65 C38S mutant subunit, with respective (C and 
D) 2D-ligand interaction plots of the binding site containing EGCG and the 
NF-κB-p65 amino acid residues which interact and stabilize the ligand in the 
selected docking pose. NF-κB-p65 shown as a secondary structure colored 
ribbon. EGCG is shown as an element-colored stick model with interacting 
amino acids represented as balls and sticks. The covalent bond between 
EGCG and NF-κB-Cys-38 (Cys Sγ interaction with the electrophilic Cβ of 
EGCG) is indicated by red arrowhead (A and C); its absence is indicated 
by yellow arrowhead (B). H bonds in green dotted lines are indicated with 
an orange arrow. Figures were generated with Discovery Studio Visualizer.
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the interaction (Figure 6A). As molecular docking studies showed 
the necessity of Cys-38 for the covalent interactions, we tested 
the involvement of Cys residues by blocking their adduction by 
S-carboxymethylation. As predicted, blocking Cys residues abolished 
the covalent adduction demonstrating their involvement and 
necessity (Figure 6B). These experimental observations prove the in 
silico molecular findings.

EGCG-NF-κB-p65 pharmacophore
Receptor-ligand complex-based pharmacophore generation 

identifies the chemical features which initiate the key interactions 
between a ligand and target receptor. We generated a pharmacophore 
based on the EGCG-NF-κB-p65 covalent complex (Figure 7). The 
pharmacophore mapped all common features of the interactions 
between EGCG and NF-κB-p65, which contain two H Bond 
Acceptors (HBA) and five H Bond Donors (HBD) (Figure 7A). EGCG 
contains four main pharmacophoric features (Figure 7B), including 
one HBA, two HBD, two Ring-Aromatic (RA), and one Hydrophobic 
(HY) feature. The distance constraints between the inter-chemical 
features of EGCG-NF-κB-p65 complex reveal the critical positioning 
of the chemical features of EGCG (Figure 7C). These results validate 
the required chemical features of EGCG for its binding with target 
proteins. Further optimization in future may guide design of novel 
EGCG derivatives as potential NF-κB inhibitors.

EGCG is an NF-κB-p65 DNA binding inhibitor
The Rel Homology Domain (RHD) of NF-κB contains a highly-

conserved cysteine (Cys-38), a key residue that facilitates NF-κB 
binding to DNA [42]. Cys-38 interacts with the phosphate backbone 
of the κB DNA enhancer motif, and alkylation of Cys-38 inhibits 
DNA binding activity of NF-κB [17]. As our results showed that 
EGCG binds covalently to the Cys-38 residue of NFκB-p65 via 
1,4-additions (S-alkylation), we analyzed the effect of NF-κB-p65’s 
binding of EGCG on its DNA-binding activity. As shown in Figure 
8A, NF-κB-p65 binds to the κB DNA enhancer motif, and Cys-38 
(acting as a HBD) formed a conventional H bond with the oxygen 
atom in the phosphate of thymidine, at a distance of 2.76 Å (indicated 
by green arrow). However, the EGCGbound NF-κB-p65 failed to 
interact with the κB DNA enhancer motif (as shown in Figure 8B). 
Covalent binding of EGCG (indicated by red arrowhead) positioned 
Cys-38 away from the DNA, and abolished formation of the relevant 
H bond. The absence of NF-κB-DNA interaction is indicated by the 
pink arrow. Our results explain the importance of the NF-κB-Cys-38 
residue, and role of its covalent modification by antioxidant molecules 
such as EGCG in inhibiting NF-κB signaling, identifying EGCG as a 
novel inhibitor of NF-κB-p65 binding to its cognate motif in DNA. 

Discussion
In modern drug discovery, theoretical and computational 

approaches such as ligand-, receptor-, and pharmacophore-based 
methods (Computer-Aided Drug Design [CADD]) inform design 
of novel and potential drugs. Drugs developed by CADD evolve by 
additional experimental studies, and have developed into drugs in 

Figure 6: EGCG and NF-κB-p65 covalent adduction. (A) NF-κB-p65 (1 µg) protein was incubated with various concentrations of EGCG-Biotin, unlabeled EGCG 
and diamide. (B) NF-κB-p65Cys or NF-κB-p65-Cys-SCM (S-carboxymethylated) protein was incubated with EGCG-Biotin. Following incubation the covalent 
adduction was determined by SDS-PAGE and Western blotting.

Figure 7: Pharmacophore of the EGCG-NF-κB-p65 complex. (A-C) Pharmacophore mapping of EGCG-NF-κB-p65 covalent docking model, showing the H 
bond donors (HBDs; magenta), the H bond acceptors (HBAs; green), the ring aromatics (RAs; orange), and the hydrophobic features and locations (HY; cyan). 
EGCG represented as a line model with a HBD-HBA surface. 3D spatial arrangement and distance constraints between chemical features of the EGCG-NF-κB-p65 
complex are shown in (C). Figures were generated with Discovery Studio Visualizer.
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clinical use [43]. Natural products provide an enormous advantage 
for ligand- and pharmacophore-based drug design, to develop stand-
alone and structural (synthetic) derivative drugs [44]. Tea is such a 
natural dietary product, that has been extensively used in traditional 
medicine [45], and EGCG, tea’s most abundant antioxidant catechin, 
is likely a key contributor of tea’s health benefits [21].

EGCG interferes with many disease-related signaling 
mechanisms, specifically by inhibiting a small number of targets, 
at biologically relevant concentrations delivered by dietary 
consumption [46]. Its beneficial effects in CVDs have been extensively 
tested experimentally and in prospective cohort studies [30, 47]. 
Our present findings reveal molecular details of the mechanism of 
EGCG-mediated inhibition of NF-κB. Prior in silico studies analyzed 
EGCG’s antioxidant activity [48] and interactions with proteasomes 
[49], human serum albumin [50], trypsin [51], and B-Raf [52], but 
the precise chemical mechanisms of its inhibition of NF-κB was 
unknown. We recently identified EGCG as a novel covalent NF-κB 
inhibitor [34], and here we revealed key parameters of its chemical 
reactivity including electrophilic Fukui ƒ+ function, in silico covalent 
binding, and generated the first known EGCG-NF-κB complex-based 
pharmacophore. The quantum mechanical parameters we computed 
revealed that EGCG-OS has electrophilicity index of 4.835 eV and 
reactivity index of 0.2156 eV with cysteine thiolate. Our density 
functional and chemical reactivity calculations showed that the B ring 
of EGCG-OS has properties that confer potential to participate in the 
Cys-alkylating 1,4-addition reaction. By molecular docking analyses, 
we found that EGCG covalently binds to NF-κB-p65 and abolishes 
its DNA binding. By generating the indicated pharmacophore, we 
further validated the importance of the required chemical features to 
EGCG’s complexation with NF-κB.

Owing to the crucial roles of NF-κB and the pathways that control 
its activation in human disorders such as chronic inflammatory 
diseases and CVDs, translational/clinical studies have assessed various 
compounds’ abilities to inhibit NF-κB activity and their mechanisms 
of action. Many of these exhibit cross-reactivity with other important 
signaling pathways such as p53 [53], as reviewed [54]. Among these, 
inhibitors that target NF-κB by direct covalent modification of redox-
regulated cysteine residues in NF-κB subunits have attracted interest 

Figure 8: DNA interactions of NF-κB-p65. Molecular models of DNA (κB; 5′-TGGGGACTTTCC3′) interactions of (A) NF-κB-p65 (B) EGCG-bound NF-κB-p65. 
NF-κB-p65 shown as a secondary structure colored ribbon. EGCG is shown as an element-colored stick model with interacting amino acids represented as balls 
and sticks. Red arrowhead indicates the covalent bond between EGCG and NF-κB-Cys-38. Presence of H bond interactions between κB and NF-κB-p65 (Cys 
Sγ [yellow]) interaction with the phosphate backbone of κB DNA) is indicated by green arrow, and its absence by pink arrow. Inserts show close-up views of the 
interactions. Figures were generated with Discovery Studio Visualizer.

[18] as potentially useful inhibitors of NF-κB activation, via upstream 
blockade of IKKβ activation and downstream blocking of dimeric 
NF-κB DNA-binding.

Pharmacological agents which can modulate NF-κB activation at 
different stages may prove useful in clinical applications or research, 
as a wide range of distinct stimulus types activate NF-κB, and these 
depend to some extent upon on cell type [55]. Development of such 
inhibitors may thus facilitate further translational/clinical research 
on NF-κB inhibitors as potential therapeutic agents, targeting 
chronic inflammatory diseases such as CVDs. We are extended 
our hypothesis and findings in in vitro studies to identify covalent 
modification of NF-κB by EGCG, the involvement of specific Cys 
residues, yet the biological and physiological significance of this 
covalent interaction need to be understood. Further optimizing the 
identified EGCG-NF-κB-p65 pharmacophore will inform and enable 
design of new and biologically or clinically useful NF-κB inhibitors, 
and ultimately the preclinical research and any human trials needed 
to elucidate the molecular and health-beneficial effects of antioxidant 
polyphenolic catechins in humans, and recommend dosing and 
effective applications in disease conditions including CVDs.

Highlights
•	 EGCG is a novel covalent inhibitor of NF-κB.

•	 EGCG’s B ring participates in a Cys-alkylating 1,4-addition 
reaction. 

•	 Optimizing EGCG-NF-κB-p65 pharmacophore enable 
design of new and biologically or clinically useful NF-κB inhibitors. 
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