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Abstract

The work presents a method to calculate solvation enthalpies 
of drug solutes from the solubility data of drugs in supercritical 
carbon dioxide. Drugs considered for the study are broadly clas-
sified into anticancer drugs and Non-Steroidal Anti-Inflammatory 
Drugs (NSAIDs). For calculating sublimation enthalpy, Bartle et al. 
model was used. For calculating solvation enthalpy, a new modified 
Chrastil model along with Bartle et al. model was used.

Keywords: Anticancer drugs; NSAIDs; Solvation enthalpy; Subli-
mation enthalpy; Solubility

Introduction

Supercritical fluids’ applications are spanning across sever-
al fields [1-10]. The pharmaceutical industry is making use of 
Supercritical Carbon Dioxide (scCO2) as solvent for its product 
size control. Drug nano and micro particles may be prepared 
effectively with the help of scCO2as a solvent for the particle 
micronization process [1]. Additionally, because to its low criti-
cal temperature, lack of toxicity and flammability, and ability to 
leave the system residue-free after decompression, scCO2 is the 
ideal medium for pharmaceutical applications. For the effective 
utilization of scCO2, enthalpies associated with the solute dis-
solution (i.e., heat of solution or enthalpy of solvation) in sol-
vent are essential. Dissolution of solid drug solute in supercriti-
cal solvents depends on its sublimation enthalpy. For efficient 
implementation of supercritical fluid-based processes require 
solubility information. The present study aims at understanding 
solubility phenomena of solids in supercritical carbon dioxide 
via the well-established solvato complex theory. Non-Steroidal 

Anti-Inflammatory Drugs (NSAIDs) and anticancer medications 
are two general categories for the drugs taken into consider-
ation for the study. The Bartle et al. model [10] was employed 
to determine sublimation enthalpy. In addition to the Bartle 
et al. model, a new modified Chrastil model was employed to 
calculate the solvation enthalpy. Further, this study alsogives 
the fundamental thermochemical information about thedrug-
scCO2systems [2].

Theory

Josef Chrastil [3] visualized the dissolution of solutes in sol-
vents in terms of solvato complex formation in the year 1981 
and finally proposed a model that gives the heat of solution 
from solubility data. 

                                                                      (1)

Where κ  and 10 AA − are model constants.
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However,eq. (1) was corrected for its dimensional consisten-
cy in the year 2009[4,5,6].

Thus, the dimensional consistency Chrastil model is

                                                                          (2)

Where κ ′  and 10 BB − are model constants.

In this work, thedimensionally corrected Chrastil model is 
further improved and named as modified Chrastil model. 

Modified Chrastil model.According to the solvato complex 
model, solute molecules are surrounded by solvent molecules 
and form a solvato complex which represents solubility. Let ‘S’ 
is the solute, ‘SF’ is supercritical fluid solvent and κSSF  is sol-
vato complex. Eq. (1) is used to represent the solvato complex 
formation. According to eq. (3) 1 molecule of S is associated 
with κ  molecules of ‘SF’ in the formation of a solvato complex 
( κSSF ) which is in equilibrium with SF.     
                     (3)

The equilibrium constant for the solvato complex formation 
[4-8] may be written as eq. (4)     
                                     (4)

where in eq. (4) each ( )ca  is expressed based on unit activity. 
For gases system ( )ca  may be expressed in terms of fugacity as

 /  f RT .

Thus eq. (4) is rewritten in terms of  /  f RT as eq. (5)

                         (5)

Further eq. (5) may be written as eq. (6)

          (6)

Where of is a known reference state and it may be chosen 
as unity or critical pressure of the SF or any other known value.

let                                                                            (7)

Then,eq. (5) may be written as eq. (8)    
                           (8)

An alternative form of eq. (4) may be obtained by replacing 
each activity term by a product of concentration and the appro-
priate activity coefficient (i.e., ( )ca = γc ) thus,

                                                                                 (9a)

                                            (or)

                                                                                 (9b)

Combining eq. (8) and eq.(9b) gives

                                                                                  (10)

                                                                                  (11)

For dilute systems, activity coefficient term may be treated 
as one. Thus,                                                                (12)                    

Assuming solute is very dilute and Antoine’s equation is ap-
plicable [4,5,7-9] to solute in the vapour phase then the vapour 
phase is expressed as eq. (13)

                                                                                  (13)

Applying natural logarithm to eq. (12) and substituting eq. 
(13) results in eq. (14)

                                                                                                    (14)

where ,

Applying antilogarithm to eq. (14) gives eq. (15)

                                                                                     (15)

where ,

Let Y be the mole ratio [10]

                                                                                      (16)

let the solvent molar density be ( )SFcD =

Then the cluster mole fraction is

                 (17)

                                                                                       

The solvato complex mole fraction ( κSSFy ) and solute’s solu-
bility in mole fraction (y2) are related as follows [8-11]

                                                                                      (18)

Thus, the expression for the solubility in terms of mole frac-
tion (y2) is

                                                                                      

                                                                                      (19)

Eq.(19) can be used to fit the solubility data. The model pa-
rameter β multiplied by universal gas constant result in enthal-
py of reaction.

Bartle et al. model. [10] It is a well-known model developed 
based on the concept of enhancement factor. According to it 
solubility of a substance in supercritical solvent is expressed as 

                                                                                     (20)

Eq. (20) can be used to fit the solubility data. The model pa-
rameter    multiplied by universal gas constant results in the 
enthalpy of sublimation.

Results and Discussion

The new modified Chrastil model and Bartle et al. models are 
evaluated with the help of literature available solubility data of 
some anticancer drugs and NSAIDs.The anti-cancer drugs used 
in the work are Loxoprofen [12], Crizotinib [13], Azathioprine 
[14], 5-Fluorouracil [15], Busulfan [16] and Temozolomide [17]. 
Similarly, NSAIDs used in the work are Apirin [18], Celecoxib 
[19], Diclofenac acid [20], Flubiprofen[21], Ketoprofen[22], 
Nabumetone [23], Naproxen [24], Niflumic acid [19], Phenylbu-
tazone [23], Salicylamide [23]. Model fitting is done with the 
objective function (OF), eq. (19) [10]

                                                                                        (21)

Table1 and Table 2 show the model constants. Parameter β  
from Eq. (19) and Parameter      from Eq. (20) can be used to get 
the values enthalpy of reaction and enthalpy of sublimation by 
multiplying with universal gas constant. Solvation enthalpiesare 
estimated from the difference between heat of reaction and 
heat of sublimation and negative sign is assigned due to its exo-
thermic nature.Table. 3 shows the calculated sublimation and 
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Table 2: Bartle et al. model parameters.
Compound in scCO2 A1 B1 C1 AARD%

Loxoprofen 9.8241 -4861.2 0.0065735 9.059

Crizotinib 11.249 -5918.3 0.0074427 9.181

Azathioprine 13.842 -6657.7 0.0070575 7.965

5-Fluorouracil 6.7262 -4566.4 0.0031683 8.081

Busulfan 13.598 -5642.1 0.0080076 8.309

Temozolomide 16.717 -5990.5 0.0067908 8.167

Apirin 23.387 -8806.3 0.0094876 4.417

Celecoxib 18.477 -8510.7 0.010633 1.979

Diclofenac acid 33.180 -12034 0.012394 6.656

Flubiprofen 29.603 -11036 0.013167 10.955

Ketoprofen 23.803 -9266.4 0.012444 8.858

Nabumetone 24.730 -8557.1 0.010614 6.093

Naproxen 17.940 -7712.0 0.0087871 6.284

Niflumic acid 10.528 -5665.6 0.0086509 2.761

Phenylbutazone 22.922 -8008.4 0.011965 7.076

Salicylamide 20.712 -8032.3 0.0085627 6.058

Table 1: Modified Chrastil model parameters.
Compound in scCO2 MW(g/mol) к α β AARD%

Loxoprofen 246.36 3.145 -17.752 -1751.345 5.464

Crizotinib 440.34 3.562 -20.035 -2410.529 8.760

Azathioprine 277.26 3.748 -17.638 -3471.322 6.1200

5-Fluorouracil 130 1.935 -9.979 -2608.703 3.580

Busulfan 246.304 5.532 -26.009 -3384.372 11.640

Temozolomide 194.15 4.418 -15.504 -3926.280 9.491

Apirin 180.15 5.131 -19.251 -4708.040 5.556

Celecoxib 381.4 6.122 -29.413 -4654.547 2.650

Diclofenac acid 296.1 8.099 -28.147 -7740.365 8.001

Flubiprofen 244.2 7.226 -28.998 -5851.683 8.822

Ketoprofen 254.28 7.109 -30.864 -5136.980 10.900

Nabumetone 228.29 6.104 -24.401 -4264.952 2.909

Naproxen 230.26 5.422 -25.433 -3947.850 7.000

Niflumic acid 282.22 4.738 -27.363 -2342.740 3.040

Phenylbutazone 308.4 6.846 -31.772 -3358.685 4.815

Salicylamide 137.14 4.829 -19.168 -4246.843 3.957

Figure 3: Correlating ability of the new model for the Niflumic 
acid-scCO2 system.

Table 3: Calculated heat of reaction, sublimation enthalpies, literature reported solvation enthalpy using Chrastil model, eq. (1) [3,12-24].

Compound in scCO2 ∆HRXN = - β×R kJ/mol
∆HSUB= -B1×R

kJ/mol

∆HSOLVATION =
-(∆HSUB- ∆HRXN)

kJ/mol
Literature Reported Solvation Enthalpies using eq. (1), kJ/mol

Loxoprofen 14.561 40.416 -25.855 -16

Crizotinib 20.041 49.205 -29.164 -18.628

Azathioprine 28.861 55.352 -26.491 -18.83

5-Fluorouracil 21.689 37.965 -16.276 -

Busulfan 28.138 46.908 -18.77 -19.49

Temozolomide 32.643 49.805 -17.162 -20.7

Apirin 39.143 73.216 -34.073 -

Celecoxib 38.698 70.758 -32.06 -

Diclofenac acid 64.353 100.051 -35.698 -

Flubiprofen 48.651 91.753 -43.102 -

Ketoprofen 42.709 77.041 -34.332 -

Nabumetone 35.459 71.144 -35.685 -

Naproxen 32.822 64.118 -31.296 -

Niflumic acid 19.478 47.104 -27.626 -

Phenylbutazone 27.924 66.582 -38.658 -

Salicylamide 35.308 66.781 -31.473 -

Figure 1: Correlating ability of the new model for the Celecoxib-
scCO2 system.

Figure 2: Correlating ability of the new model for the Nabume-
tone-scCO2 system.
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solvation enthalpies. It is important to note that the calculated 
sublimation and solvation enthalpies values are in J/mol, how-
ever, the results were tabulated in terms of kJ/mol in Table 3. 
The correlating ability of the new model is shown in Figs .1-4 for 
celecoxib-scCO2, nabumetone-scCO2, niflumic acid-scCO2 and 
5-fluorouracil-scCO2 systems.Newmodel correlates the solubil-
ity data quite well. Literature reported solvation enthalpies of 
some drugs using Chrastil model, eq.(1) are also indicated in 
Table 3.

Conclusion

In this work, a new solvato complex model has been pro-
posed and solubilities of some anti-cancer drugs and NSAIDs 
were successfully evaluated and correlating ability of the new 
model is observed to be good in terms of AARD%. Sublimation 
enthalpy of drugs was estimated with Bartle et al. model. Fi-
nally, with the help of both the model parameters solvation en-
thalpies of drugs were computed.
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