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Abstract

Many engineering problems exhibit nonlinearity which manifest 
in the form of multiple steady- states and oscillatory behavior. The 
nonlinearity is caused by the presence of singularities which can be 
classified as limit points, branch points and Hopf bifurcation points. 
This article demonstrates that the presence of limit and branch 
points that cause multiple steady-states are advantageous for mul-
tiobjective nonlinear model predictive calculations and enable one 
to obtain the utopia solution. To demonstrate that this is not a co-
incidence eight different examples are shown. The Matlab program 
MATCONT is used for the bifurcation analysis and the optimization 
language PYOMO, is used for performing the multiobjective nonlin-
ear model predictive control. The novelty of this work rests in the 
integration of bifurcation analysis and optimal control.

Keywords: Bifurcation; Multiobjective; Dynamic optimization
Introduction

The existence of nonlinear phenomena, such as multiple 
steady-states and oscillatory behavior in chemical processes is 
often regarded as problematic both from a practical and com-
putational standpoint. Often, the nonlinearity is believed to 
present obstacles to computationally obtaining the optimal pa-
rameters necessary to be able to conduct the process in a ben-
eficial manner avoiding the unnecessary wastage of resources. 
In this paper, it is shown, that contrary to popular opinion, the 
singularities that cause multiple steady-states actually are ben-
eficial in obtaining the utopia point, where no compromise is 
needed. It is seen that In problems where singularities that 
lead to multiple steady-states (limit point and branch point) are 
present the utopia solution is easily obtained while performing 
multiobjective nonlinear model predictive control (MNLMPC) 
calculations. The main focus of this paper is to demonstrate 
with several examples that when multiobjective nonlinear 
model predictive control is performed on problems that exhibit 
limit and branch points the utopia solution was easily obtained. 
This paper is organized as follows. First, the bifurcation analysis 
and the multiobjective nonlinear model predictive control pro-
cedures are described. This is followed by an explanation as to 
why the utopia point is obtained when MNLMPC calculations 
are performed for these problems. Eight different examples are 
then presented illustrating this fact. The existence of bifurca-
tions in engineering problems that lead to multiple steady state 
solutions is well known [1-9]. Bifurcations that lead to multiple 
steady-state solutions are a) Branch Points and b) limit points. 
Both these bifurcation points are singularities where the Ja-
cobian matrix of the set of steady-state equations is singular. 
However, at a branch point there are 2 distinct tangents at the 

singular point while at a limit point there is only one tangent at 
the singular point. Singularities in the Jacobian matrix are often 
indicative of an optimal solution and this motivates the investi-
gation of how the singular points in the Jacobian matrix, indicat-
ed by branch and limit points would affect the multiobjective 
dynamic optimization and the multiobjective nonlinear model 
predictive control. One of the most commonly used software to 
locate these bifurcatons is MATCONT [10-11]. MATCONT uses a 
continuation procedure implementing the Moore-Penrose ma-
trix pseudo-inverse. A stationary solution of the model under is 
used to obtain, a set of points that corresponds to the equilibria 
of the ordinary differential equations. CL_MATCONT detects 
the singularities and bifurcation points in the solution path and 
obtains all the branches of the solutions starting from the bi-
furcation points.

This software detects singular points which are Limit points, 
branch points and Hopf bifurcation points. Hopf bifurcation 
points do not cause multiple steady-states and therefore do 
not result in the formation of a maxima or minima. Limit and 
Branch points cause the existence of multiple solutions. Con-
sider an ODE system

Where x ∈ Rn Let the tangent plane at any point x be 

[v1, v2 , v3 , v4 ,....vn+1 ] . Define matrix A as

x = f (x, β )                            (1)
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The matrix A can be written in a compact form as

The tangent surface must satisfy the equation

For both limit and branch points the matrix B must be sin-
gular. For a limit point (LP) the n+1thcomponent of the tangent 
vector singular [12-14]. vn+1= 0 and for a branch point (BP) 
the matrix  must be

Multiobjective Nonlinear Model Predictive Algorithm

The multiobjective nonlinear model predictive control strat-
egy (MNLMPC) method was first proposed by Flores Tlacuahuaz 
[15] and used by Sridhar [16]. This method does not involve 
the use of weighting functions, nor does it impose additional 
constraints on the problem unlike the weighted function or the 
epsilon correction method [17]. For a problem that is posed as

The MNLMPC method first solves dynamic optimization 
problems independently minimizing/maximizing each any vari-
able pi individually. The minimization/maximization of pi will 
lead to the values   . Then the optimization problem that will 
be solved is

i

This will provide the control values for various times. The first 
obtained control value is implemented and the remaining dis-
carded. This procedure is repeated until the implemented and 
the first obtained control value are the same.

The optimization package in Python, Pyomo [18], where the 
differential equations are automatically converted to a Nonlin-
ear Program (NLP) using the orthogonal collocation method 
[19]. The Lagrange-Radau quadrature with three collocation 
points is used and 10 finite elements are chosen to solve the 
optimal control problems. The resulting nonlinear optimization 
problem was solved using the solvers IPOPT [20] and confirmed 
as global solutions with Baron [21] To summarize the steps of 
the algorithm are as follows

1. Minimize/maximize pi subject to the differential and 
algebraic equations that govern the process using Pyomo with 
IPOPT and Baron. This will lead to the value  time intervals ti. 
The subscript i is the index for each time step.

2. Minimize {p − p*}2 subject to the differential and 
algebraic equations that govern the process using Pyomo with 
IPOPT and Baron. This will provide the control values for various 
times.

3. Implement the first obtained control values and dis-
card the remaining.

Repeat steps 1 to 4 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables or if the Utopia point is achieved. The Utopia 
point is when  for all i.

Effect of singularities (Limit Point (LP) and Branch Point 
(BP)) on MNLMPC 

Let the minimization be of the variable p1 lead to the value 
M1 and the minimization of function p2 lead to the value M2 
. This is equivalent to minimizing ( p1 − M1 )

2 and ( p2 − M2)
2 . The 

subsequent multiobjective minimization will be of the function 
( p1 − M1)

2 + ( p 2 − M2 )2 .

The multiobjective optimal control problem is

If the set of ODE 
 
= g(x, u) has a limit or a branch point,

gx is singular.Hence there are two different vectors-values 
for [λ i ] where .  In between there  

is a vector [λi] where . This coupled with the bound-
ary condition λi (ts ) = 0   will lead to [λi ] = 0 which will make 
the problem an unconstrained optimization problem and the 
one and the onlysolution for the unconstrained problem is the 
Utopia solution. This is illustrated in eight different examples. 
presented in the next section.

Results and Discussion

Bifurcation analysis and MNLMPC is performed on eight dif-
ferent problems. In all these cases, limit and branch points are 
found and the MNLMPC converged to the Utopia solution.

Problem 1

The model of a continuous stirred tank reactor (CSTR) where 
x is the product concentration [22]
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where

λ, β ,γ ,α4 , x are variables .
A bifurcation analysis of the ODE describing this process was 

performed using MATCONT with λ as the bifurcation variable 
and a limit point of [λ, x] =[0.393180 0.377651] was obtained 
(fig. 2a) The performance of a MNLMPC for the same problem 

with λ as the control parameter t f involved the maximization 

of ∑ x(t) which produced an answer of 6 and the minimiza-

tion of t f ∑λ(t) which produced an answer of 0. The resulting 
MNLMPC involved the minimization of  

this optimization resulted in a value of 0 , which is the Uto-
pia point.

All optimization was done subject to the equations repre-
senting this process. Figure 2b shows the

(x, λ, t) Pareto surface

Problem 2

The second problem is the Bratu-Gelfand BVP [22]. The equa-

tions governing this problem are

The variables are x and y and the bifurcation parameter is 
a.  A bifurcation analysis of the ODE was performed using MAT-
CONT with a as the bifurcation variable One limit point whose 
co-ordinates are [x,y,a]=(1.000001 1.000001 0.367879) is ob-
tained along with a branch point and a Hopf bifurcation point 
(Figure 3a)

The performance of a MNLMPC for the same problem with 
a as the control parameter involved the minimization of  

and the minimization of  each of which produced an an-

swer of 0. The resulting MNLMPC involved the minimization of 

  which resulted in the utopia point of 0.

Figure 3b shows the [x, y, a] Pareto surface.

Problem 3

In the problem involving a catalytic oscillator [22], the ODE 
describing the process are

z=1-x-y-s. The parameter values are 
 q1 = 2.5; q3 = 10; q4 = 0.0675; q5 = 1; q6 = 0.1 k = 0.4

Figure 1a: Limit Point is good starting point to obtain Utopia solu-
tion.

Figure 1b: Branch point is good starting point to obtain Utopia 
solution.

Figure 2a: (bifurcation analysis for problem 1).

Figure 2b: Pareto surface for the MNLMPC in problem 1.

Figure 3a: (bifurcation analysis for problem 2).
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Problem 3

In the problem involving a catalytic oscillator [22], the ODE 
describing the process are

q2 is the bifurcation variable. Two limit points 
[x, y, z, q2] = (0.024717, 0.450257, 0.375018, 1.042049) and 
(0.054030, 0.302241, 0.459807, 1.052200) along with 2 Hopf 
bifurcation points (Figure 4a) are obtained.

The MNLMPC involves the maximization which pro-

duced an answer of 1.4207 and the minimization of 

which produced a value of 0.57925. The minimization of the 
distance from the utopia point which was the minimization of

Resulted in a value of 0 implying that the utopia solution has 
been obtained. Figure 4b shows the Pareto optimal surface for 
problem 3.

z=1-x-y-s. The parameter values are

Problem 4

For the continuous fermentation problem involving Zymomo-
nas Mobilis [23,24], the dynamic model for the 4 components, 
substrate (S), microorganism or biomass (X), the key compound 
(e), and product (P) are given by the following equations.

 where D is the dilution rate. The tanh factoris 
a smoothing factor that was used to avoid the spikes that may 
occur in the control profile. Table 1 has all the parameter values.

CS 0 = 200.

When Matcont was used to perform a bifurcation analysis 
on the set of ODE a limit point was obtained at [Ce,Cx ,CS ,CP,- D] 
= ( 0.527352 0.229513 188.926780 5.219420 0.570281 ) (Figure 
5a).

For the MNLMPC problem, the main product (ethanol) con-
centration CP is maximized while the  sum of the remaining prod-
ucts, Cx + Ce + Cs is minimized. The maximization of CP yields 
a value of 300 while the minimization of products, Cx + Ce + Cs 
yields a value of 0. Then the function [C + C + C − 0]2 +[C − 300]2 

is minimized subject to the ODE governing this process. The re-
sulting solution was the utopia point 0. The Pareto surface 
(t,d,Cp) is shown in Figure 5b

Figure 4a: (bifurcation analysis for problem 3).

Figure 4b: [t,q2,z] pareto optimal surface for problem.

Figure 5a: Bifurcation analysis for problem 4.

Figure 5b: t,d, Cp Pareto surface, problem 4.

Problem 5

This problem involves a two-stage bioreactor [25]. where X 
and S represent the biomass and the substrate concentrations 
from the two stages. The ODE governing this process are

Figure 3b: {x,y,a] Pareto Surface in problem 2.
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Where α = 0.1019; β = 0.5;γ = 0.1;δ = 0.8; Ks = 0.4818; KD = 0.0141; 
S0 =1.05 .

When Matcont was used to perform a bifurcation analysis on 
the set of ODE led to one branch point

(S1,S2,X1,X2,d) = ( 1.105257 1.105251 0.000001 0.000002 
2.423307 ) (Figure 6a ). For the MNLMPC, the Maximization of           

     led to a value of 300 while the minimization of

         led to a value of 0. Then the function 

was minimized subject to the ODE governing this process. 
This minimization led to a value of 0, which is the Utopian 
point. The [t,d,X2] Pareto curve is shown in fig. 6b

Figure 6a: Bifurcation diagram of Problem 5 (X2 Vs d).

Figure 6b: Problem 5 t d X2 Pareto Surface.

Problem 6

This problem involves the SIR epidemiological model [26]. 
Here S represents the susceptible population, I the infected and 
R the recovered population. The ODE representing this model 
are

and the parameter values are A=2; d=0.1; d=2.4; β = 0.8;ε = 
0.6;γ = 0.2 . A bifurcation analysis performed in this problem 
(with a the bifurcation parameter) reveals the existence of a 
limit point at [S,I,R,a] = ( 9.559357 1.160071 2.320143 6.628457 
). Fig 7a shows the bifurcation diagram with LP representing the 
limit point. For the MNLMPC, the Maximization of          

               led to a value of 20 while the minimization of               

                      

       led to a value of 0. Then the function 

                        

                                              was minimized subject to the ODE 
governing this process. This resulted in the Utopia solution. The 
t S I surface is shown in fig. 7b

Figure 7a: Bifurcation analysis for problem 6.

Figure 7b: (t s I surface problem 6).
Problem 7

Problem 7 [27] involves a process that consists of a well-
stirred, aerobic fermentor in which Saccharomyces cerevisiae 
grows in a medium of sugar cane molasses. Here C1,C2 dimen-
sionless concentrations of cell mass, and the substrate conver-
sion, The differential equations governing the process are

Table 1: Base set of parameters used for the Zymomonas Mobilis 
fermentation (Garhyan and Elnashaie, 2004).

Parameter Value

K1 16.0

K2 0.497

K3 0.00383

ms 2.16

mp 1.1

Ysx 0.02444498

Ypx 0.0526315

Ks 0.5

P 0.1283
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and the parameter values are β = 0.1;γ = 0.4 A bifurcation 
analysis with Matcont revealed the existence of two limit points 
for [C1,C2 , Da]

values of (0.463780 0.293292 0.315235 ) and (0.516260 
0.646558 0.290107 ) (Figure 8a)

For the MNLMPC, the Maximization of   

                 led to a value of 3.3366 while the minimization  of 

                  led to a value of 0. Then the function 

subject to the ODE governing this process.This minimization 
led to a value of 0, which is the Utopian point. The [t,C1,C2 ] is 
shown in Figure 8b 

Problem 8

This Problem [9] involves adipogenesis were the states of the 
model are the concentrations of the various species involved.

The inputs are the glucocorticoids G and cAMP (cyclic AMP)

Figure 8a: Bifurcation analysis for problem 7.

Figure 8b: (t c1 c2 surface for problem 7).

Figure 9a: (bifurcation analysis diagram for problem 8).

Figure 9b: (t, cAMP, x6 surface for problem 8).

A bifurcation analysis with Matcont revealed the existence of 
a limit point for [x1, x2 , x3 , x4 , x5 , x6.cAMP]  Values of (1.223551 
0.462982 1.588752 2.297976 14.720304 0.470792 6.576315). 
The bifurcation diagram is shown in Figure 9a The MNLMPC 
involved the individual minimization of 

 

that  led to a value of 0.0474 and   cAMP that led to a  
value of zero. 

Then the function  was 
minimized subject to the

equations governing this process and this led to the Utopia 
point. Figure 9b shows the [t, x6 , cAMP]

In all the examples, limit and branch points for the differ-
ential equations that constitute the dynamic constraints are 
found. The presence of these limit and branch points creates 
a path to the utopia point which is easily obtained when MN-
LMPC is performed.

Conclusions

MATCONT and Pyomo are used to perform the bifurcation 
analysis and multiobjective nonlinear model predictive control 
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on several problems governed by differential equations. The 
presence of limit and branch points that cause multiple steady-
states in these differential equations actually are very beneficial 
because they enable the MNLMPC algorithm to find the Utopia 
point. Eight different examples have been presented demon-
strating that this is not a coincidence the novelty of this work 
rests in the integration of bifurcation analysis and optimal con-
trol.
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