
Citation: Sridhar LN. Bifurcation Analysis and Nonlinear Model Predictive Control of the Tri-Trophic Food 
Chain Model. Austin Chem Eng. 2024; 11(1): 1111.

Austin Chemical Engineering - Volume 11, Issue 1 - 2024
Submit your Manuscript | www.austinpublishinggroup.com 
Sridhar LN © All rights are reserved

Austin Chemical Engineering
Open Access

Abstract

Bifurcation analysis and Nonlinear model predictive control were performed 
on a tri- trophic food chain model. It is also demonstrated (both numerically 
and analytically) that the presence of the branch points was instrumental in 
obtaining the Utopia solution when the multiobjective nonlinear model prediction 
calculations were performed. Bifurcation analysis was performed using the 
MATLAB software MATCONT while the multi-objective nonlinear model 
predictive control was performed by using the optimization language PYOMO.
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Background and Literature Review
Several workers have investigated the high nonlinearity of tri-

trophic food chain models. Freedman and Wolkowicz [8] investigated 
predator-prey systems with group defense. Freedman and Ruan [7] 
showed the existence of. Hopf bifurcations in three-species food chain 
models. Chattopadhyay, Sarkar and, El Abdllaoui [3] developed a delay 
differential equation model on harmful algal blooms in the presence 
of toxic substances. Mukhopadhyay and Bhattacharyya [16] modeled 
phytoplankton allelopathy in a nutrient-plankton model with spatial 
heterogeneity. Bercia and Bercia [1] performed a bifurcation analysis 
of a model of a three-level food chain in a mangrove ecosystem. Nath, 
Kumari, Kumar and, Das [17] studied strategies to stabilize chaos in 
a tri-trophic food chain model. Kumar and Kumari [11] developed 
methods to control chaos in a three-species food chain model with 
fear effect. Upadhyay and, Naji [20] studied the dynamics of a three-
species food chain model with Crowley–Martin type functional 
response. Upadhyay and, Raw [21]. Discussed the complex dynamics 
of a three- species food-chain model with Holling type IV functional 
response. Kumari [13] demonstrated a pattern formation in spatially 
extended tri-trophic food chain model systems: Kumar and Kumari 
[12] did a bifurcation study and pattern formation analysis of a 
tri-trophic food chain model with group defense and Ivlev-like 
nonmonotonic functional response.

Although several articles demonstrate the existence of 
bifurcations in the tri-trophic food chain models and thus highlight 
the nonlinearity, there has been no research so far studying the effect 
of the bifurcations on the optimization and control of these models.

In this work, bifurcation analysis and nonlinear model predictive 
control (MNLMPC) calculations are performed on the tri-trophic 
food chain model [12]. It is shown that the presence of the singularities 

in the tri-trophic food chain model cause the MNLMPC calculations 
to converge to the Utopia solution.

Objectives

The main objectives of this research are to

1. Perform bifurcation analysis on the tri-trophic food chain 
model

2. Perform MNLMPC calculations on the tri-trophic food 
chain model

3. Demonstrate that the presence of singularities in the tri-
trophic food chain model results in the MNLMPC calculations 
converging to the Utopia solution.

The rest of this paper is organized as follows. The tri-trophic 
food chain model [12], the bifurcation analysis procedure, and 
the MNLMPC calculation strategy are described followed by an 
analysis demonstrating how the presence of the singularities cause 
the MNLMPC calculations to converge to the Utopia solution. The 
numerical results are then described followed by the conclusions.

Tri-Trophic Food Chain Model

In this model, r represents the birth rate of the prey, K is the 
carrying capacity of the prey, a is the half-saturation constant of the 
intermediate predator and top predator, and γ the maximum value 
that per capita reduction rate of the intermediate predator can attain. 
a1 represents the conversion coefficient from prey to intermediate 
predator, γ1 stands for the conversion coefficient from intermediate 
predator to top predator, d1 the death rate of the intermediate predator 
in the absence of the prey while r represents the death rate of the top 
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predator in the absence of the intermediate predator. β is the reciprocal 
of the density of the prey at which predation reaches its maximum

The parameter values are

r = 0.7; k = 20; α = 0.3; α1 = 0.15; β = 0.11; γ = 0.45; γ1 = 0.99; d1 
= 0.23; d2 = 0.05

a is both the control variable and the bifurcation parameter. u1(t), 
u2 (t), u3(t) are the population densities of prey, intermediate predator 
and the top predator, The equations of this model are

  (1)

Bifurcation Analysis

The existence of bifurcations in engineering problems that lead 
to multiple steady-state solutions is well known. Bifurcations that 
lead to multiple steady-state solutions are a) Branch Points and b) 
limit points. Both these bifurcation points are singularities where 
the Jacobian matrix of the set of steady-state equations is singular. 
However, at a branch point there are 2 distinct tangents at the 
singular point while at a limit point there is only one tangent at the 
singular point One of the most commonly used software to locate 
these bifurcations is CL_MATCONT [4,5] CL_MATCONT uses a 
continuation procedure implementing the Moore-Penrose matrix 
pseudo-inverse. A stationary solution of the model under is used to 
obtain, a set of points that corresponds to the equilibria of the ordinary 
differential equations. CL_MATCONT detects the singularities and 
bifurcation points in the solution path and obtains all the branches of 
the solutions starting from the bifurcation points.

CL_MATCONT detects singular points which are limit points, 
branch points and Hopf bifurcation points. Hopf bifurcation points 
do not cause multiple steady-states and therefore do not result in the 
formation of a maxima or minima. Limit and Branch points cause the 
existence of multiple solutions. Consider an ODE system

 (2)

Where x ε Rn Let the tangent plane at any point x be [v1, v2 , v3 , 
v4 ,....vnn+1 ] . Define matrix

A as

The matrix A can be written in a compact form as

The tangent surface must satisfy the equation

Av = 0 (5)

For both limit and branch points the matrix B must be singular. 
For a limit point (LP) the n+1th component of the tangent vector vn+1 
= 0 and for a branch point (BP) the matrix  must be singular 
[9,14,15].

Multi-objective Nonlinear Model Predictive Algorithm

The Multiobjective Nonlinear Model Predictive Control Strategy 
(MNLMPC) method was first proposed by Flores Tlacuahuaz [6] 
and used by Sridhar [19]. This method does not involve the use of 
weighting functions, nor does it impose additional constraints on 
the problem unlike the weighted function or the epsilon correction 
method [16]. For a problem that is posed as

min J (x, u) = (x1, x2……..xk)

subject to 

h (x,u) ≤ 0

xL ≤ x ≤ xU (6)

uL ≤ u ≤ uU 

The MNLMPC method first solves dynamic optimization 
problems independently minimizing/maximizing each any variable 
pi individually. The minimization/maximization of pi will lead to the 
values . Then the optimization problem that will be solved is

 (7)

This will provide the control values for various times. The first 
obtained control value is implemented and the remaining discarded. 
This procedure is repeated until the implemented and the first 
obtained control value are the same.

The optimization package in Python, Pyomo [10], where the 
differential equations are automatically converted to a Nonlinear 
Program (NLP) using the orthogonal collocation method [2]. The 
Lagrange-Radau quadrature with three collocation points is used and 
10 finite elements are chosen to solve the optimal control problems. 
The resulting nonlinear optimization problem was solved using the 
solvers IPOPT [23], and confirmed as global solutions with Baron 
[20] To summarize the steps of the algorithm are as follows

1. Minimize/maximize pi subject to the differential and 
algebraic equations that govern the process using Pyomo with IPOPT 
and Baron. This will lead to the value  at various time intervals ti. 
The subscript i is the index for each time step.

2. Minimize  subject to the differential and 
algebraic equations that govern the process using Pyomo with IPOPT 
and Baron. This will provide the control values for various times.
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3. Implement the first obtained control values and discard the 
remaining.

Repeat steps 1 to 4 until there is an insignificant difference 
between the implemented and the first obtained value of the control 
variables or if the Utopia point is achieved.

The Utopia point is when  for all i.

Effect of singularities (Limit Point (LP) and Branch Point 
(BP)) on MNLMPC

Let the minimization be of the variable  lead to the value  
and the minimization of function  lead to the value . This is 
equivalent to minimizing and . The 
subsequent multiobjective minimization will be of the function 

.

The multi-objective optimal control problem is

 (1)

For all i,

 
(2)

At the Utopia point both  and  are zero. 
Hence

 (3)

Now let us look at the co-state equation

 (4)

The first term in this equation is 0 and hence

 (5)

If the set ODE  has a limit or a branch point, gx is 
singular.

Hence there are two different vectors-values for [  where 
 and .

In between there is a vector [ ] where . This coupled 
with the boundary condition  will lead to [ ] which will 
make the problem an unconstrained optimization problem and the 
one and only solution for the unconstrained problem is the Utopia 
solution.

Numerical Results

The MATLAB software MATCONT was used to perform the 
bifurcation analysis which revealed the existence of a limit point, a 
branch point and a Hopf bifurcation point all on the same curve. For 
the co-ordinates [u1, u2, u3, a], the limit point (LP) occurred at a value 
of (10.909096 3.521336 40.727707 66.201119), a Branch Point (BP) 
occurred at a value of (1.887061 2.600669 -0.000000 48.892584) while 
a Hopf bifurcation point (H) occurred at a value of (9.246831 3.469177 
41.455132 65.220534). The three points are shown in figure 1.

Figure 1:

Figure 2:

Figure 3:
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For the MNLMPC calculations, u1 was maximized and (u2 
+ u3) was minimized. The maximization of  resulted in 
a value of 50.0014, while the minimization of  produced 
a value of 0. For the MNLMPC calculation the objective function 

was minimized subject to the differential equations 
representing the Tri-Trophic Food Chain Model. This resulted in a 
value of 0 which is the Utopia solution and the obtained MNLMC 
value of the control variable a was 15.086.

Fig. 2 shows the u1(t), u2(t), u3(t) profiles while Figure 3 shows the 
control variable (a) profile.

Conclusions
This work re-emphasizes the highly nonlinear nature of the tri-

trophic food chain model demonstrating the existence of the limit 
point, branch point, and the Hopf bifurcation point on the same 
curve and for the same bifurcation parameter. However, the existence 
of these bifurcation points is not a cause for concern as these singular 
points actually aid in the multiobjective nonlinear model predictive 
control calculations to converge to the best solution (Utopia point).
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