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Abstract

The kinetics of oxidation of L-glutamine (Gln) by permanganate ion has been 
investigated in alkaline medium at a constant ionic strength of 0.2 mol dm-3 and 
at 25oC using spectrophotometric technique. A first order kinetics with respect 
to [permanganate] and less than unit order dependences on [Gln] and [OH-] 
were revealed. No pronounced effect on the reaction rate by increasing either 
ionic strength or solvent polarity of the medium was recorded. Intervention of 
free radicals was observed in the reaction. The reaction mechanism describing 
the kinetic results was suggested. The final oxidation products of L-glutamine 
were identified as formyl propanamide, ammonia and carbon dioxide. The 
rate-law expression for the oxidation reaction was deduced and the reaction 
constants have been evaluated. The activation parameters associated with the 
rate-limiting step of the reaction, along with the thermodynamic quantities of the 
equilibrium constants have been calculated and discussed. 
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as oxidizing agent, it is understandable that, the Mn(VII) in 
permanganate is reduced to a variety of oxidation states in acidic, 
alkaline and neutral media. 

There are no reports on the kinetics and mechanism of oxidation 
of L-glutamine by permanganate ion. This motivates us to investigate 
the title reaction. The objectives of the present study aimed to shed 
more light and establish the most favorable conditions affecting 
oxidation of such amino acid and to elucidate a plausible oxidation 
reaction mechanism.

Experimental 
Materials

All reagents were from Merck or Sigma. A stock solution of 
L-glutamine was prepared afresh by dissolving the appropriate amount 
of the sample (E. Merck) in the required volume of bidistilled water. 
Solution of potassium permanganate was prepared and standardized 
as reported earlier [35]. Other chemicals were of analytical grade and 
their solutions were prepared by dissolving requisite amounts of the 
samples in bidistilled water. Sodium hydroxide solution was used 
to provide the required alkalinity. Sodium per chlorate and t-butyl 
alcohol were used to study the effects of ionic strength and dielectric 
constant of reaction medium, respectively. 

Kinetic measurements 
The kinetic measurements were followed under pseudo-first order 

conditions where L-glutamine substrate (Gln) was exist in a large 
excess over that of permanganate. Initiation of the reaction was done 
by mixing the formerly thermostatted solutions of permanganate and 
substrate that also contained the required amounts of NaOH and 
NaClO4. The course of the reaction was followed up to not less than 
two half-lives by monitoring the absorbance of permanganate as a 
function of time at its absorption maximum (λ = 525nm), whereas the 
other constituents of the reaction mixture did not absorb considerably 

Introduction
Amino acids are biologically important organic compounds 

composed of both amine and carboxylate functional groups, along 
with a side-chain specific to each amino acid. Due to the biological 
importance of amino acids, the kinetics and mechanistic studies of 
their oxidation by a variety of oxidants have received considerable 
attention [1-20]. L-Glutamine is a α-amino acid that is used in the 
biosynthesis of proteins. It is non-essential and conditionally essential 
in humans who are synthesized by the enzyme glutamine synthetase 
from glutamate and ammonia. Glutamine plays a role in a variety 
of biochemical functions [21-23]. In human blood, glutamine is the 
most abundant free amino acid. The demand for glutamine increases 
with physical and mental stress. Production of this important amino 
acid, which takes place in the body, often slows down with age and 
does not generate sufficient amounts. Glutamine plays a decisive role 
in keeping a balanced acid-base ratio. The most relevant glutamine-
producing tissue is the muscle mass. If not enough glutamine is 
available, the body takes the necessary protein from muscle mass and 
converts it to glutamine and energy. This leads to muscle proteins 
being lost, muscle strands becoming thinner and the skin becoming 
generally saggy. Although the liver is capable of relevant glutamine 
synthesis, its role in glutamine metabolism is more regulatory than 
producing, since the liver takes up large amounts of glutamine derived 
from the gut. Glutamine can be converted to glucose in the kidneys, 
without effecting glucagon or insulin levels. There are also indications 
that glutamine can reduce the demand for sugar and alcohol [22,23]. 

Potassium permanganate is extensively used as an oxidizing 
agent for numerous organic molecules in various media [24-34]. 
The oxidation reaction mechanisms by permanganate are governed 
by pH of the medium [33]. Among six oxidation states of Mn(II) to 
Mn(VII), permanganate, Mn(VII) is found to be the most powerful 
oxidation state in both acid or alkaline media. By using permanganate 
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at the determined wavelength. The absorption measurements were 
done in a temperature-controlled Shimadzu UV-VIS-NIR-3600 
double-beam spectrophotometer. The reactions temperature was 
controlled to ± 0.1oC.

First order plots of ln(absorbance) versus time were recorded to 
be straight lines up to at least two-half lives of the reaction completion 
and the observed first order rate constants (kobs) were calculated as the 
gradients of such plots. Ordinary values of at least two independent 
determinations of the rate constants were taken for the analysis. The 
rate constants were reproducible to 2-3%. The orders of the reaction 
with admiration to the reactants were calculated from the slopes of the 
log kobs versus log(concentration) plots by varying the concentrations 
of both substrate and alkali, in turn, while keeping other conditions 
constant.

Results 
Stoichiometry and product analysis 

Reaction mixtures containing different initial concentrations 
of the reactants with an excess of permanganate ion concentration 
at [OH-] = 0.05mol dm-3 and at 0.2mol dm-3 ionic strength, were 
equilibrated for about 24h at room temperature. The unconsumed 
permanganate was estimated periodically until it reached a constant 
value, i.e. completion of the reaction. Estimation of unconsumed 
[MnO4

-] revealed that approximately 2.0mol of permanganate 
consumed 1.0 mol of L-glutamine. This result confirms to the 
following stoichiometric equation, 

 H2N (CO) CH2 –CH2 – CH (NH2) COOH + 2MnO4
- + 2OH- =

 H2N (CO) CH2 –CH2 – CHO + 2MnO4
2- + NH3 + CO2 + H2O 

The above stoichiometric equation is consistent with the 
results of product analysis. The products were identified as the 
corresponding aldehyde (formyl propanamide) by spot test [36], 
intermediate manganate(VI) by its visible spectrum, ammonia by 
Nessler’s reagent [37] and carbon dioxide by lime water. The product, 
formyl propanamide was also estimated quantitatively as its 2,4-DNP 
derivative [37]. 

Spectral changes 
Spectral changes throughout the oxidation of L-glutamine 

by alkaline permanganate are represented in Figure 1. The main 
characteristic feature manifested in the figure is the gradual decay 
of permanganate band at its absorption maximum (λ = 525nm) as a 
result of its reduction of permanganate by the amino acid. 

Effect of permanganate concentration
Permanganate oxidant was diverse in the concentration range of 

1.0 x10-4 to 8.0 x 10-4 mol dm−3 while the other reactant concentrations, 
pH and temperature were kept constant. It has been found that, plots 
of ln(absorbance) versus time were linear up to about two-half lives 
of the reaction achievement. Furthermore, the increase in the oxidant 
concentration did not change the oxidation rate as listed in Table 1. 
These results confirm the first order dependence with respect to the 
oxidant.

Effect of L-glutamine concentration
The observed first order rate constant (kobs) was measured at 

different concentrations of the L-glutamine keeping others constant. 

A plot of kobs versus [Gln] was found to be linear with a positive 
intercept on the kobs axis (Figure 2) confirming fractional-first order 
dependence with respect to the amino acid concentration. 
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Figure 1: Spectral changes throughout the oxidation of L-glutamine by 
alkaline permanganate. [MnO4

-] = 4.0 x 10-4, [Gln] = 0.01, [OH-] = 0.05 and I 
= 0.2 mol dm-3 at 25oC.

104 [MnO4
-]

(mol dm-3)
102 [Gln]

(mol dm-3)
102 [OH-]

(mol dm-3)
I

(mol dm-3)
105 kobs

(s-1)
1.0 1.0 5.0 0.2 39.8

2.0 1.0 5.0 0.2 36.0

3.0 1.0 5.0 0.2 37.4

4.0 1.0 5.0 0.2 39.4

6.0 1.0 5.0 0.2 39.7

8.0 1.0 5.0 0.2 40.1

4.0 0.4 5.0 0.2 19.9

4.0 0.7 5.0 0.2 31.1

4.0 1.0 5.0 0.2 39.4

4.0 1.3 5.0 0.2 50.3

4.0 1.6 5.0 0.2 58.1

4.0 2.0 5.0 0.2 67.8

4.0 1.0 3.0 0.2 32.1

4.0 1.0 5.0 0.2 39.4

4.0 1.0 7.0 0.2 47.6

4.0 1.0 9.0 0.2 54.2

4.0 1.0 12.0 0.2 59.3

4.0 1.0 15.0 0.2 66.6

4.0 1.0 5.0 0.2 39.4

4.0 1.0 5.0 0.3 43.7

4.0 1.0 5.0 0.4 48.2

4.0 1.0 5.0 0.5 51.3

4.0 1.0 5.0 0.6 53.6

4.0 1.0 5.0 0.8 57.1

Table 1: Effect of variation of [MnO4
-], [Gln], [OH-] and I on the observed first order 

rate constants (kobs) in the oxidation of L-glutamine by alkaline permanganate at 
25oC.

Experimental error  ±3%.
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Effect of alkali concentration
The influence of alkali on the reaction rate was deliberated at 

various [OH-], keeping all other reactant concentrations constant. An 
increase in the rate constant with increasing alkali concentration was 
achieved (Table 1). A plot of log kobs versus log [OH-] was found to be 
linear with a slope of less than unity as shown in Figure 3, suggesting 
that the reaction order with respect to [OH-] was fractional-first. 

Effect of ionic strength and solvent polarity
The effect of the ionic strength was studied by varying the 

concentration of NaClO4 in the reaction medium at constant 
concentrations of permanganate, L-glutamine and alkali. It was 
found that increasing the ionic strength increased the oxidation rate 
as observed from the data listed in Table 1. The Debye-Hückel plot 
(ln kobs vs. I1/2) was found to straight with a positive slope as shown 
in Figure 4.

The solvent polarity of the reactions media, ε, was varied by 
varying the t-butyl alcohol–water content (0–40%) in the reaction 

mixture with all other conditions being constant. The ε values were 
calculated from the equation: ε = εwVw + εBVB, where εw and εB are 
solvent polarities of pure water and t-butyl alcohol, respectively, and 
Vw and VB are the volume fractions of components water and t-butyl 
alcohol, respectively, in the total mixtures. The data clearly reveal that 
the decrease in solvent polarities of the solvent mixtures, i.e increase 
the t-butyl alcohol content decreased the oxidation rate and the plot 
of log kobs versus 1/ε was found to be linear with a negative slope as 
illustrated in Figure 5.

Effect of temperature
The oxidation rate was recorded at five different temperatures, 

288 - 308 K, under varying the concentrations of L-glutamine and 
alkali at constant ionic strength. The activation parameters of the rate 
constant of the slow step (k1) along with thermodynamic parameters 
of the equilibrium constants involved in the reaction mechanism 
were evaluated using Arrhenius and Eyring equations and were listed 
in Tables 3 and 4, respectively. 

Polymerization study
To check the existence of free radicals in the reaction under 

investigation, the reaction mixture was mixed with identified 
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Figure 2: Plots of the observed first order rate constant (kobs) versus 
[Gln], at different temperatures, in the oxidation of L-glutamine by alkaline 
permanganate. [MnO4

-] = 4.0 x 10-4, [OH-] = 0.05 and I = 0.2 mol dm-3.
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Figure 3: Plots of log kobs versus log [OH-], at different temperatures, in the 
oxidation of L-glutamine by alkaline permanganate. [MnO4

-] = 4.0 x 10-4, [Gln] 
= 0.01 and I = 0.2 mol dm-3.
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Figure 4: Debye-Huckel plot in the oxidation of L-glutamine by alkaline 
permanganate. [MnO4

-] = 4.0 x 10-4, [Gln] = 0.01 mol dm-3 at 25oC.

Figure 5: Plot of log kobs versus 1/ε in the oxidation of L-glutamine by alkaline 
permanganate. [MnO4

-] = 4.0 x 10-4, [Gln] = 0.01 and I = 0.2 mol dm-3 at 25oC.
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quantities of acrylonitrile monomer and stored for about 6 hours 
under dry nitrogen condition. On dilution with methanol, a white 
precipitate was formed, indicating the participation of free radicals 
in the oxidation reaction. The blank experiments which were carried 
out with either permanganate or substrate with acrylonitrile did not 
induce polymerization under the same experimental conditions. 

Discussion
Permanganate ion is fund to be a powerful oxidant in aqueous 

alkaline media and exhibits some of oxidation states such as Mn(VII), 
Mn(V) and Mn(VI). At pH > 12. The reduction product of Mn(VII) 
is stable Mn(VI) and no further reduction is observed [38,39]. The 
formation of a manganate(VI) intermediate was confirmed by the 
green color observed as the reactions proceeded [40] which undergoes 
a slow decay to give rise to the final oxidation products. The yellow 
color persisted after achievement of the oxidation reaction, then 
finally discreted brown MnO2 sol was observed confirming that 
the Mn(V) species, hypomanganate(V), formed and subsequently 
decomposed to Mn(IV) sol [40]. The latter was coagulated by aging to 
give a colloidal precipitate of MnIVO2. 

It was reported [41,42] that, permanganate ion in aqueous alkaline 
media combines with alkali to produce an alkali-permanganate 
species, [MnO4.OH]2-, in a pre-equilibrium step, as shown in Scheme 
1. This is consistent with the apparent order of less than unity with 
respect to the alkali. The formation of [MnO4.OH]2- in the present 
systems is further supported by the plots of 1/kobs versus 1/[OH-] 
shown in Figure 7, which are linear with non-zero intercepts. 

Many investigators [25-34,43-46] have suggested that, most of 
the permanganate ion oxidation reactions in neutral and alkaline 
media proceed through intermediate complexes formation between 
the oxidant and substrate. The kinetic evidence for such complex was 
established by the linearity of the plots between 1/kobs and 1/[Gln] 
as shown in Figure 6, in favor of possible formation of a transient 
complex flanked by oxidant and substrate comparable with the well-
known Michaelis-Menten mechanism [47] for enzyme-substrate 
reactions. 

On the other hand, amino acid in aqueous solution is known to 
exist as zwitterion [48], whereas in aqueous alkaline medium it exists 
as anion (deprotonated species) according to the following equilibria:

The observed increase in the ionic strength and solvent polarity 
of the reaction medium implies association of two similarly charged 
ins [49,50], i.e. between negative deprotonated, anionic, amino acid 
(Gln-) and negative alkal-permanganate species. 

In view of the above arguments, the reaction mechanism shown 
in Scheme 1 may be suggested. This involves attack of the active 
species of permanganate, [MnO4.OH]2-, on the deprotonated amino 
acid, Gln-, leading to the formation of a complex (C) in a pre-
equilibrium step. In this complex, one electron is transferred from the 
substrate to permanganate. Under slow cleavage of the complex, the 
formation of a free radical intermediate derived from the substrate, 
and manganate(VI) transient species has been monitored. The 
intermediate radical is rapidly decarboxylated forming a new radical 
intermediate which attacked by another alkali-permanganate species 
to yield the final oxidation products.

[ ]1 2
4 4MnO OH MnO .OHK −− −+ 



The relationship between reaction rate and L-glutamine, hydroxyl 
ion and oxidant concentrations can be deduced (see Appendix) to 
give the following equation,

-
1 1 2 4

1 1 2

[Gln][OH ][MnO ]Rate
1 [OH ] [Gln][OH ]

k K K
K K K

−

− −=
+ +

   (1)

Under pseudo-first order conditions, the rate-law can be 
expressed as,

4
4

[MnO ]Rate = [MnO ]obs
d k

dt

−
−−

=    (2)

Comparing equations (1) and (2) and with rearrangement we 
obtain the following equations,

1

1 1 2 1

1 [OH ]1 1 1
[OH ] [Gln]obs

K
k k K K k

−

−

 +
= + 
 

    (3)

-
1 1 2 1 2 1

1 1 1 1 1 1
[Gln] [OH ] [Gln]obsk k K K k K k

   
= + +   
      (4)

Constant
Temperature (K)

288 293 298 303 308

103 k1 (dm3 mol-1 s-1) 1.43 1.56 1.67 1.75 1.82

K1 (dm3 mol-1) 11.07 12.13 13.37 14.78 15.91

K2 (dm3 mol-1) 71.44 82.71 92.88 104.07 117.12

Table 2: Values of k1, K1 and K2 (at different temperatures) in the oxidation of 
L-glutamine by alkaline permanganate. [MnO4

-] = 4.0 x 10-4, [Gln] = 0.01, [OH-] = 
0.05 and I = 0.2 mol dm-3.

∆S≠

J mol-1 K-1 
∆H≠

kJ mol-1
∆G≠

298
kJ mol-1

Ea
≠

kJ mol-1

-122.78 8.98 45.57 11.02

Table 3: Activation parameters associated with the slow step (k1).

Equilibrium
Constant

∆Ho

kJ mol-1
∆Go

298
kJ mol-1

∆So

J mol-1K-1

K1 13.14 -6.44 -65.71

K2 17.96 -11.22 -97.93

Table 4: Thermodynamic parameters associated with the equilibrium constants 
(K1 and K2).

Experimental error ±3%.
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Figure 6: Plots of 1/kobs versus 1/[Gln], at different temperatures, in the 
oxidation of L-glutamine by alkaline permanganate. [MnO4

-] = 4.0 x 10-4, [OH-] 
= 0.05 and I = 0.2 mol dm-3.
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According to Eqs. (3) and (4), other conditions being constant, 
plots of 1/kobs versus 1/[Gln] at constant [OH-] and 1/kobs versus 1/
[OH-] at constant [Gln] should be linear with positive intercepts on 
the 1/kobs axes and are certainly found to be so as shown in Figures 
6 and 7, respectively. The slopes and intercepts of such plots lead to 
calculation of the values of k1, K1 and K2 (at different temperatures) as 
listed in Table 2. The obtained values of K1 are in a good agreement 
with those reported in the literature [25-32]. Also, the activation 
parameters of k1 along with thermodynamic parameters of K1 and K2 
were calculated and were listed in Tables 3 and 4, respectively.

It has been previously reported [51,52] that, the entropy of 
activation tends to be more negative for reactions of inner-sphere 
nature, whereas the reactions of positive DS≠ values proceed via 
outer-sphere mechanism. The obtained large negative values of 
entropy of activation (Table 3) suggest that one-electron transfer 
of inner-sphere nature is the more plausible mechanism for the 
current oxidation reaction. On the other hand, the positive values 
of both ∆H≠ and ∆G≠ specify that, the formation of the complex is 

Scheme 1: Mechanism of oxidation of L-glutamine by alkaline permanganate.

endothermic and non-spontaneous, respectively.

Conclusion
The kinetics of oxidation of L-glutamine by alkaline permanganate 

has been studied. The final oxidation products were identified as 
formyl propanamide, ammonia and carbon dioxide. The rate-law 
expression for the oxidation reaction was deduced and the reaction 
constants have been evaluated. The activation parameters along with 
the thermodynamic quantities have been calculated and discussed. 
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