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the maximum average temperatures of cold streams at the outlet of 
the heat exchanger.

In this study we have solved the problem of the minimal entropy 
production (minimal exergy losses) in some typical multi- flow heat 
exchange systems. Such estimation permits to:

•	 Define the significance of such factors as temperatures and 
heat capacities streams, heat loads, an integral coefficients of the heat 
exchange, etc., in a selected heat exchange system;

•	 Exploit the optimal heat exchange conditions to make a 
designed system’s configuration closer to the ideal when designing 
new systems;

•	 Evaluate thermodynamic efficiencies of the designed 
system by means of comparison of its actual entropy production with 
the least possible entropy production under the same conditions.

The entropy production in a heat exchange system can be 
calculated for known fluxes of heat capacity rate (water equivalent), 
input and output temperatures of these streams. Stream’s water 
equivalent is product of flow rate g [kg/s] and specific heat C [J/kg K] 
(W = gC). Alternatively, one can also calculate the sum of products 
of heat loads q and corresponding driving forces, say X , for each 
heat exchanger (see below). By assumption each driving force is a 
monotonously increasing function of q  (usually it is proportional to
q ). In the latter case the entropy production is proportional to q 2 
and inversely proportional to the product of heat coefficient á  and 
contact area, S. For a constant system’s exchange area, S, this entropy 
production could be arbitrarily small if the heat load q  is arbitrarily 
small and the heat coefficient á  is fixed or if the coefficient á  is 
arbitrarily large and the load q  is fixed. The above statements are true 
for every heat exchanger and for the heat exchange system as a whole.

However, since in the process reality neither of these limiting 
conditions [for á  and q ] could be implemented, we are allowed 
to assume that q  and á  are fixed and bounded quantities. In fact, 
this assumption is equivalent to the acceptance of some constraints 
which bound the entropy production within an admissible region of 
the process space. The present study estimates the minimal entropy 
production for such constrained systems.

Many results stemming from the present theory have previously 
been known for the special case of two-stream heat exchangers 
[3,4,5]. Therefore, in what follows, we shall focus on multi-stream 
heat exchange systems.

The minimal entropy production condition bounds the feasibility 
of heat exchange systems in the plane with coordinates q  and á .

Relation between entropy production and input/output 
parameters of flowing streams: The total differential of molar 
entropy expressed in terms of heat capacity and differentials of 
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Introduction
Classical estimates for limiting performance of technological 

systems (heat and refrigerating machines, separation systems, 
chemical reactors, etc.) are based on efficiency limits of reversible 
processes (Carnot efficiency, reversible work of separation, standard 
chemical affinity, etc.). These estimates are very important but cannot 
be reached by real systems as the reversible models do not take into 
account effects of flow intensity, contact surfaces and some other 
factors related to a fixed productivity and finite dimensions of the 
equipment. In some cases reversible estimations lose any sense, 
as in the case of stationary non-equilibrium systems with several 
reservoirs or systems with substance and energy in flows. The heat 
exchanger is an example of such a system. Therefore, thermodynamic 
estimations of heat exchanger efficiency must take into account 
the effect of a restricted contact surface (integral coefficient of heat 
exchange) and of the finite heat load (that is, the finite amount of 
heat transmitted from hot to cold streams per unit of time). For 
the efficiency estimation of such systems we use the exergy method 
(see [1,2] etc.), that is the method of rating the system’s exergy 
loss. This exergy loss is proportional to the entropy production and 
to the ambient temperature T0. The minimum exergy loss at given 
temperatures of hot streams and for a given heat load corresponds to 
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temperature and pressure has the form [2].
p

p

C uds dT dp
T T

∂ = −  ∂ 
    (1)

where T - absolute temperature, cp - molar heat capacity at a constant 
pressure p and v- molar volume. Integrating this equation with 
respect to temperature and pressure between initial and final values 
of T and p we shall get the entropy production per one mole. For a 
known expenditure of a molar flow, a partial entropy production can 
be attributed to this flow value. By summing these partial values with 
respect to flows we can get the entropy production in whole system.

For fluids of a constant heat capacity and under constant 
pressure 

#

0
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T
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     (2)

the entropy production due to the change of a state of the ith flow 
is equal to the product of its water equivalent and the logarithm of 
temperature ratio involving input and output temperatures

#
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σ
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 i=1, 2, ….. ,   (3)

Where Wi = giCi - product of flow rate gi and specific heat Ci 
(water equivalent). Total entropy production is the sum of entropy 
productions attributed to individual flows.

Double-Flow Heat Exchange
Let us consider a double-flow heat exchanger, Figure1, 

characterized by heat load q and water equivalents W1 and W2. We 
shall write down present an equation linking the entropy production 
with system’s input temperatures, (T01; T02), and output temperatures 
(T#1, T#2)

01 1
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.   (4)

Now we assume that the values of hot flows and heat load are 
fixed, so that 1 is also fixed. From Eq. (4) a relation follows which links 
the output temperature of cold flow with the entropy production ó

#2
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2
2

.
1 exp

qT
W

W
σ σ

=
  −
− −  

    (5)

The output temperature of the cold flow increases monotonously 
with. If is fixed, or q increase, to increase the output temperature of 
cold flow. The same results hold for multi- flow heat exchangers.

For a double- flow heat exchange with the given heat load these 
holds the following Proposition is valid

Proposition 1: The entropy production of the system with the hot 
flow

Input temperature T01 and heat capacity rate W1 cannot be less 
than

( )2
* 1

,
m

m
σ α

−
=

         (6)

(Figure 2), where     
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In the case when the cold flow’s input temperature T02 and the 
heat capacity rate W2 are fixed, the minimal entropy production is

( )2
* 1

,
n

n
σ α

−
=    (8)

 where
02 22

02

/1 ln .T q WWn
Tα

+
= +    (9)

Figure 2 shows the minimum entropy production as a function 
of heat ex-changer heat load q  [W] and integral heat transfer 
coefficient á  [W/K]. Values of the temperature of hot flow and its 
water equivalent are fixed. These estimations are valid for the linear 
heat transport law

1 2( )q T Tα= −

and for every section of the heat exchanger. The minimal entropy 
production, Eqs (6) and (8), can be achieved in a countercurrent 
tube heat exchanger with a constant lengthwise exchange coefficient, 
provided that the flow temperature ratio changes inversely to the heat 
capacity ratio. In this case, the temperature ratio for every section of 
the exchanger is

( )1

2

1 .
( )

T l
n

T l m
= =     (10)

The proof of Proposition 1 as a consequence of minimal 
dissipation conditions was given in [6]. The result was specialized for 
the linear heat transport law [4]. This result will now be used for the 
multi- flow heat exchanger.

Figure 1: Double- Flow heat exchanger.

Figure 2: Attainability boundary for the double-flow heat exchanger.
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Let us remark that the condition of constant intensity of sources 
and constant temperatures of working medium in the heat engine 
constitutes an optimal condition for the heat engine with finite 
capacity sources [7].

The ratio of the minimal entropy production and the real entropy 
production defines the thermodynamic efficiency of a heat exchanger.

As shown in [3], for an arbitrary heat transport law q(T1, T2), the 
entropy production is minimal if at each point of hot and cold flows’ 
contact the following conditions hold for q2(T1, T2)

2 2
1 2 2

2

( , ) ,qq T T T
T

λ
∂

=
∂

   (11)

Where λ is a constant, which depends on a contact surface and 
the heat load.

Multi Flow Heat Exchange
A calculation of the complex heat exchange system with several 

hot and cold flows implies the need to determine flow contact 
temperatures, the distribution of heat exchange surfaces and heat 
loads. To solve this problem heuristic algorithms are usually used or 
the problem is solved only for the given system’s structure, [8,13].

In the paper [13] the heat exchange system with three flows and a 
given structure is considered. It is shown that the entropy production 
within a countercurrent flow is lower than in a concurrent flow.

Below it is proved that for the system with an arbitrary structure 
the entropy production is bounded from below and gets attains 
conditions to reach this bound (Figure 3). The entropy production in 
the multi- flow heat exchange system with a linear heat transport law 
is equal to a sum of entropy components:

2

.ij
ij

ijij ij ij ji

q
T T

σ σ
α

= =∑ ∑   (12)

Here the summation is over heat exchanges, each characterized 
by the index i for hot flows, and the index j for cold flows.

Let us obtain the lower estimate of the entropy production in 
the multi- flow heat exchange system and corresponding to this low 
estimate the temperature distributions, as well as distributions of 
heat exchange coefficients and heat loads in heat exchangers. This 
estimation permits to find a thermodynamic efficiency

*

1σρ
σ

= ≤

for a real working system. When designing this system, one can use 
our calculation to obtain the system’s efficiency sufficiently close to 
that following from our calculations which utilize distributions of 
temperatures and heat-exchange contact area.

The case when temperatures of hot flows are fixed: Let us 
consider the input temperature of heating flow T0i+ and the heat 
capacity rate W (T0i+) = Wi+ as fixed quantities. We will denote the 
heat load for a flow with temperature T0i+ as qi, and the corresponding 
heat exchange coefficient as αi.

The distribution of heat exchange surfaces is equal to the 
distribution of the heat exchange coefficients, therefore the following 
coefficient

,i
i

α α=∑     (13)

will be assumed as a constant quantity. We shall also use the sum of 
heat loads

i
i

q q=∑     (14)

When Ti+, Wi+ and q  are fixed, then the average enthalpy of hot 
streams in the outlet stream of the system is fixed as well.

Outlet temperatures of hot flows depend on inlet temperatures 
and the heat load as follows

# 0 /i i i iT T q W+ + += −    i = 1,……, n.  (15)

The problem of entropy production minimization has the form

i
i

σ σ= →∑
  , ,( ),

min
i oi i iu T T qα+ +    (16)

where u (Ti+; T0i+) the contact temperature of the cold flow which 
exchanges the energy with the hot flow of the input temperature T0i+ 
and the current temperature Ti+.

Derivation of computational relations: We shall solve the 
problem (13)-(16) in two stages. At the first stage, we assume that 
qi and αi are fixed for all i. Keeping these conditions in mind, we 
de ne the correlations of current temperatures for the heated flows 
ui, and the heating flows Ti+ corresponding to the minimal entropy 
production ió  [denoted in Eq. (8) by ] for the heating flow with 
initial temperature T0i+.

At the second stage, we de ne the contact surface distribution i 
and the heat load distribution qi, both capable to minimize subject to 
the constraints (13) and (14).

The first problem is solved in section 2, Eqs (8) and (9). For every 
inlet temperature of a hot stream
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The second stage results in α and q distribution problem subject 
to the constraints (13), (14) and the condition

*
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α
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Here the Lagrange function takes the following form 
*

, , , 1 2( )i oi i i i i i
i i i
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where λ1 and λ2 are some constants independent of i 

The stationary conditions for L lead to equations 
* *
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i i

i
q

σ σλ λ
α

∂ ∂
= = ∀

∂ ∂
  (20)

In order to calculate derivatives in (20), let us extract the following 
derivatives
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Hence Eq. (20) takes the following form 
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 From (21) it follows that for the optimal heat exchange 
organization, m is independent of T0i+ and the output temperatures 
for all flows should be equal to each other:

T#i+ = T*
#+:

T*
#+ is unambiguously determined by Eq. (14) since
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After defining   
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In order to express m by initial data rewrite Eq. (17) as 
follows 

*
#(ln ln .

1
i oi

i
W T T

m
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=
−    (28)

As α i is non-negative then T0i+ ≥ T*
#+.

Therefore in a heat exchange system only hot flows with a 
temperature higher than T*

#+ should be used. If T0i+ < T*
#+ then all 

contact surface areas for this flow should be zero.

This result corresponds to the fact that, in optimal cycles of the 
heat engine with several sources, it is not advantageous to contact 
with hot sources having temperatures lower then T+min and cold 
sources with temperature greater then T max (see [14]).

After summing the left and the right hand sides of (28), where 
the integral heat exchange coefficient is fixed, we find m in the form

 *
#

11 (ln ln ).i oi
i

m W T T
α + + += − −∑   (29)

Thus the optimal distribution of heat exchange coefficient is

( )
*

#
*

#

(ln ln ) ,
ln ln

i oi
i

i oi

W T T
T T

α α + + +

+ +

−
=

−∑   (30)

The heat load distribution is
*

#( ),i i oiq W T T+ + += −    (31)

and the least possible entropy production is  
2

* (1 ) .m
m

σ α −
=  (32)

After comparing Eq. (32) with the entropy production ó  of a real 

heat exchange system characterized by total heat exchange coefficient
á , hot flow inlet temperatures T0i+, heat capacity rates Wi+ and the 
outlet enthalpies of heating flows W i+, T #i+ we can estimate the 
system’s efficiency as 

*

.σρ
σ

=

In order to make the system characteristics closer to ideal, we 
should distribute the heating flows and the heat exchange surfaces 
according to Eq’s (31) and (30) and choose contact temperatures 
according to Eq. (29) i.e. the condition of temperature constancy in 
terms of m. This can be done by reducing the heat exchange surface in 
heat exchangers with characterized by temperature ratio for hot and 
cold flows higher than the system’s average value. For heat exchangers 
with the temperature ratio lower than the average value, the heat 
exchange surface should be enlarged. Similarly, the heat intake should 
be increased for heating flows with output temperatures higher than 
the average outlet temperature of heating flows.

The final formulas describing the optimal choice for output 
temperatures of heated flow, the heat load, the heat exchange 
coefficient, the temperature ratio for contact flows and the least 
possible dissipation take the following form:
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where k is the number of hot flows, which it is advisable to use (Ti0+ 
>T*

#+).

Therefore the proposition 2a has been proved.

 Proposition 2a: For heat exchange systems with given number 
of hot flows, inlet temperatures, heat capacity rates, total heat load 
and heat exchange surface in a linear heat transport law, the entropy 
production satisfies inequality *.σ σ≥

If conditions (33) hold, then inequality turns into equality.

Temperatures of cold flows are fixed: To estimate *σ we assume 

Figure 3: Structure of the multi-flow heat exchanger.
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that characteristics of hot flows are given and the task is to select 
cold flows parameters in such a way that the entropy production is 
minimal. But it may also happen that characteristics of cold flows are 
given.

We shall denote variables of cold flows (temperatures, heat 
capacity, rates, etc.)  With the index “-”.  Using previous arguments, 
we can find the value of minimal entropy production for a system 
with fixed temperatures of cold flows, T1- ≥ Ti- ≥ T2- and heat capacity 
rates, Wi- . Below we present the computation relations derived for 
this case.

     (34)
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The last requirement states that in the system with the minimal 
entropy production all input temperatures of cold flows should 
neither exceed nor be equal to T*#-.

Proposition 2b: For heat exchange systems with given number 
of cold  flows, inlet temperatures, heat capacity rates, total heat load 
and heat exchange surface, the entropy production satisfies inequality 

*σ σ−≥ which means that
*.σ σ≥     (35)

This inequality is a thermodynamic feasibility condition satisfied 
in multi flow heat exchange systems. Heat exchangers for which this 
condition is violated cannot be implemented.

In a real system parameters of cold and hot flows are usually 
given. To evaluate the thermodynamic efficiency of such system we 
should take use the maximal value of *σ or *σ− , to get more detailed 
estimate of efficiency.

Example
Figure 4 shows the heat exchange system with three hot and 

cold flows. Hot flows index is +, whereas cold flows index is - . 
Temperatures, in Kelvins, are shown on the figure next to the arrows. 
Heat exchange coefficients [kJ/sK] are given in circles, and flows of 
water equivalents for each inlet flow are Wi+ and Wi-.

Assume that the effective temperature is equal to the mean 
temperature of the input and the output temperature in each 
heat exchanger. For these conditions we get heat loads qij for each 
heat exchanger (Table1). In accordance with Eq. (4), the entropy 
production in this system, calculated as the sum of entropy production 

increases for each flow, is described by the equation

The entropy production in this system (4) calculated as sum of 
entropy production increases for each flow.

3 3
##

1 1 0

ln ln .ji
i i

i jio j

TTW W
T T

σ −+
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The numerical value of the entropy production is equal to = 5; 574 
[kJ/sK]. We use the set of formulas in Eq. (33) to perform calculations 
of the optimal thermodynamic system with total heat load q=5851 
[kJ/s] and heat exchange coefficients [in conductance units] á  =48 
[kJ/sK]. We will get the optimal out-put temperature for hot flows 
T*

#+= 453.4 K. Comparing this temperature with inlet temperatures 
for hot flows, we conclude that the third flow with the

Temperature 450 K should be excluded from the system.

Recalculation of T*
#+ for two hot flows for the same values of q  

and á  gives T*
#+ =457.2. Optimal values of heat loads for first and 

second flows are respectively equal to q (T01+)= 3712[kJ/s] and q
(T02+) =2140 [kJ/s]; the optimal contact surface distribution for these 
two flows, Eq. (33), corresponds with á  (T01+)=29,9 [kJ/sK], á  (T02+) 
=18,1 [kJ/sK]. The ratios of effective temperatures should be equal for 
cold and hot flows, and are equal to m=0.752. The minimal entropy 
production in this system is equal to *σ =3.93 [kJ/sK]. For this system 
the thermodynamic efficiency is equal to

*

0,705.σρ
σ

= =

Combining results for real and optimal systems we can formulate 
the following recommendations:

1. The flow with the input temperature 450K should be removed 
from the system. Heat exchange surfaces for other flows grow for the 
first flow from 19 to 30, for the second one from 14 to 18 [kJ/sK].

2. Heat exchange surfaces for each flow should be distributed in 

Figure 4: The heat exchange system.

j\i 1 2 3

1 885 416 271.5

2 591.9 375.3 452

3 1233.5 983.7 549.2

Table 1: Heat loads qij.
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such a way that the ratio of effective temperatures is close to 0.75. 
Note that in the real system this value changed from 0.63 to 0.88.

 3. The output temperatures of hot flows should be close to 457,2.

Conclusion
In this paper we de ne the thermodynamically optimal 

organization of the heat exchange in order to achieve the least 
possible entropy production for a system with the fixed heat load and 
the fixed total heat transfer coefficient. We also define the appropriate 
heat load distribution and the heat exchange coefficient distribution 
for the input flows. Our study permits to estimate the thermodynamic 
efficiency for a random heat exchange system and to refine it, as well as 
to analyze the system’s dependence on such factors as the temperature 
variations of flows or changes in the heat exchange surfaces.

Optimal conditions for a heat exchanger cannot be implemented 
for some systems for any distribution of heat exchange surfaces. It 
means that the structure parameters of these systems should be 
changed.

Analogous results can be obtained for other heat transport laws. 
In this case the condition of the least possible dissipation should be 
used for a given but different kinetics.
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