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Abstract

This short review introduces the basic components and mechanism of 
Atmospheric Pressure Photoionization (APPI) and its application to detect 
Pharmaceutical and Personal Care Products (PPCPs) and hormones in 
environmental samples. 
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Introduction
Mass Spectrometry (MS) has been an ideal detector for Liquid 

Chromatography (LC) because of its sensitivity, selectivity and 
accuracy. MS was first couple with LC in 1970s, but until the invention 
of Atmospheric Pressure Ionization (API) in 1990s, MS becomes a 
widespread detector for LC. Nowadays, the two most widely used API 
for LC is Electrospray Ionization (ESI) and Atmospheric Pressure 
Chemical Ionization (APCI). ESI occurs in the liquid phase and its 
application is mainly on the polar compounds. While APCI occurs 
in the gas phase and can be employed to ionized less polar molecules. 
Atmospheric Pressure Photoionization (APPI) is a relatively less 
popular ionization technology for LC-MS. Compared to the ESI and 
APCI, APPI is the last soft ionization technique that cans ionize less 
polar and nonpolar molecules which are poorly amenable to ESI and 
APCI. On the basis of the polarity and molecular weight of target 
compounds, the application of different ionization technology is 
shown in Figure 1. 

Besides ionization technique and mass spectrometer, LC 
technique also plays an important role on the selectivity and sensitivity 
of LC–MS analysis. Although reversed-phase LC is most commonly 
used, there are also many other LC techniques, including ion-pair, ion 
exchange, affinity and size exclusion chromatography. The separation 
efficiency of LC is dependent on the column diameter and solid-phase 
material. The organic mobile phase includes methanol, acetonitrile or 
a combination of these two solvents, while the aqueous phase is water 
with the addition of formic acid, acetic acid, ammonium hydroxide, 
and ammonium format and ammonium acetate to adjust pH.

Pharmaceuticals and Personal Care Products (PPCPs) and 
hormones are Endocrine Disrupting Compounds (EDCs), which 
exist in the ecosystem at very low concentration (ng/L) but have 
adverse effect on wild animals and humans. The detection of these 
challenge compounds requires proper sample preparation and 
sophisticated instrument. Combinations of the latest technologies 
in LC and MS offer powerful approaches to the analysis of these 
challenge compounds in minimal amounts in complex matrices. The 
successful operation of LC–MS requires experienced personnel and a 
clear understanding of the operational parameters. The instrumental 
parameters, analytes characteristics and eluent composition directly 
influence the signal response. This short review briefly introduces the 
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technology of APPI and focus on its application on environmental 
samples, especially for detection of PPCPs and hormones.

APPI is based on the interaction of a photon beam created by a 
discharge lamp with the vapors of a nebulizer liquid solution [1]. The 
most widely used lamp for APPI is krypton lamp, which can produce 
photons of 10.03 and 10.64 eV in a 4:1 ratio [2]. The reason to choose 
krypton is mainly because the energy of photons is higher than most 
analytes and lowers than commonly used solvents. Besides krypton, 
xenon and argon were also used. Xenon was employed in the early 
years of APPI [3], but its low energy of produced photons (8.4 eV) 
prohibits its employment. Because argon produces more energetic 
photons (11.7 eV) than krypton, argon lamps give about 100 time’s 
higher intensities in the solvent ions and produce more abundant 
molecular ions than krypton lamps [2]. Considering the ionization 
efficiency of the analytes as a function of the flow rate, krypton lamps 
produce a better S/N ratio at a low solvent flow rate, whereas argon 
lamps are better at higher solvent flow rate [1].

The mechanism of APPI
The Molecules (M) absorbs a photon (E=hv) and become an 

electronically excited molecule: M+hv→ M* (1). If the Ionization 
Energy (IE) of molecule is lower than the energy of photon, IE<hv, 
the molecule releases and energetic electron and becomes the 
corresponding odd-electron caution (2). 

M*→ M•+ +e− (2)

Figure 1: Application of API techniques for compounds on the basis of 
polarity and molecular weight.
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If the IE>hv, M* may undergo a de-excitation process, such as 
photodissociation (3), photon emission (4) or collision quenching 
(5). 

M*→ A + B (3)

M*→ M + hv (4)

M* +C → M + C* (5)

In such situation, the use of a preferentially ionized substance, 
dopant (D), has been used to promote the ionization of M. 
Compared to analytes, the dopant is added in large quantities and 
it acts as an intermediate between the photons and the analytes. The 
dopant is photo ionized first (6) and charge exchange with analytes 
subsequently if the Electron Affinity (EA) of the analyte is higher than 
the EA of dopant (7). If the Proton Affinity (PA) of analytes is higher 
than the PA of the deprotonated dopant ion, solvent molecules can 
act as intermediate between the dopant ion and the analytes (8,9).

D+ hv→D•+ (6)

D•++M → D + M•+ if EAM>EAD (7)

D•+ + nS → [D-H]• + [Sn + H]+      if PAS> PA[D-H]
• (8)

[Sn + H]+ + M → nS + [M+H]+   if PAM> PAS (9)

The most frequently used dopants are toluene, actone, anisole, 
and chlorobenzene, etc. Dopant can be introducing to system through 
gas phase delivery (Figure 2).  Syringe Pump is used to deliver dopant 
into system.

Application of APPI
High Performance Liquid Chromatography Mass Spectrometry 

(HPLC-MS) has been shown as a valuable alternative for detection of 
PPCPs and EDCs to overcome the drawbacks of GC-MS [4-14]. ESI, 
APCI and APPI are the three most common ionization techniques 
coupled with liquid chromatography [1]. ESI and APCI have both 
been widely used for analysis of polar molecules in the aqueous 
environmental samples in many studies [7,8,11]. Several studies that 
described multi-target detection of up to 74 compounds by ESI have 
been recently published in the literature [11,15]. However, ESI and 
APCI also have many critical limitations. For example, some steroids, 
and generally nonpolar compounds, such as Polycyclic Aromatic 

Hydrocarbons (PAHs), are poorly ionized or cannot be ionized by 
ESI or APCI [16]. Therefore, it is not surprising that most of the 
studies using ESI are focused on the most polar, easily ionizable 
pharmaceuticals. Only a handful of studies have tried to detect 
steroid hormones that are difficult to ionize by ESI or APCI with 
marginal results [17,6]. Not surprisingly, there is abundant literature 
for compounds amenable to ESI but reports are scarce for those that 
present an ionization challenge. The critical issue is that the most 
EDC active compounds are not well ionized by ESI.

APPI is a technique that has the capability to ionize compounds 
with a wide range of polarities while being remarkably tolerant of 
matrix components of HPLC additives. The rapidly growing number 
of publications in this area clearly demonstrates the advantages of 
atmospheric pressure photoionization [18,19,1]. At the beginning, 
APPI was introduced as a complement of ESI and APCI. So far, APPI 
has been proved to be a valuable tool for analytes which are poorly 
ionized or not ionized by ESI and APCI. In particular APPI was 
shown to be able to detect steroid hormones down to several ng/L 
and had been proven to have much higher sensitivity than ESI. For 
example, Viglino and coworkers developed a fully automated online 
method using LC-APPI-MS/MS to simultaneously detect selected 
natural and synthetic hormones at concentrations as low as 5 ng/L 
[20]. Yamanoto et al. compared detection of steroidal hormones using 
ESI and APPI and they found that APPI displayed higher sensitivity 
than ESI for most of the unconjugated steroids examined, with much 
greater sensitivity for testosterone and 4-androstene-3, 17-dione [21]. 
Wang compared ionization efficiency of HESI, APCI and APPI on 23 
PPCPs and hormones. Results indicate that APPI using toluene as 
dopant provides exceptional ionization capabilities for a broad range 
of compounds, in particular for hormones and sterols compared to 
APCI and HESI [22].

Conclusion
Although APPI is a relatively less popular atmospheric pressure 

ionization technology for LC-MS, its ability of ionization a broad 
range of compounds, especially high ionization efficiency for less 
polar and nonpolar compounds, extended the LCMS’s application. 
APPI makes LCMS become a powerful approach to analysis of EDCs. 
Also, its remarkable tolerance to complex matrix makes it more 

Figure 2: Dopant gas delivery system. A Thermo Ion MAX source housing equipped with Syagen technology APPI source.
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applied in environmental research and many other research areas.
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