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Abstract

Immune system possesses distinct innate (less specific) and adaptive 
(more specific) branches which act in a collaborative way to eliminate cancer 
from the host. In spite of the presence of immune response, tumors develop in 
the body spontaneously through different immune escape strategies. During the 
progression of cancer, immune cells become paralyzed and altered. In tumor 
microenvironment both innate (macrophage and NK cells) and adaptive (CTLs 
and effector T cells) immune cells are unable to recognize and induce specific 
effector response against cancer to eradicate it. Tumor cells release different 
types of chemokines, cytokines, growth factors that can modulate immune 
cells to become tolerogenic and allow tumor cells to grow rapidly without any 
restriction. Immune cells also cannot discriminate the tumor antigens as they 
are concealed in stroma and are also less immunogenic. The immune cells thus 
become dormant and effective immune responses against tumors could not be 
elicited. Tumor cells exploit the plethora of immunosuppressive mechanisms 
which include abnormalities of antigen processing and presentation, induction 
of negative co-stimulatory signals that helps to establish tumor immune evasion. 
In addition, infiltration of T-regulatory cells, immature and tolerogenic Dendritic 
Cells (DCs), tumor-associated macrophages, and myeloid-derived stromal 
cells foster suppressive, tolerogenic condition. The understanding of different 
immune evasion mechanisms will help to design effective immunotherapies to 
overcome tolerogenic condition and elicit tumor regression.
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equilibrium phase tumor cells and immune cells may enter into a 
dynamic equilibrium those results in tumor persistence. In escape 
phase tumor variants that escape from immune selection process of 
equilibrium stages develop into clinically apparent, highly metastatic 
and invasive tumors by avoiding the immune responses [4,5]. In 
tumor microenvironment the tumor cells employ certain strategies to 
escape immune response by modulating the immune cells so that they 
cannot recognize and eliminate them. When tumors become highly 
metastatic and invasive, the immune system becomes paralyzed and 
the improper immune response favors tumor progression. In this 
review we will discuss the tumor immune escape strategies and the 
role of immune cells in tumor immune evasion.

Tumor immune escape strategies
In tumor microenvironment tumor cells execute various 

strategies to evade the immune system and establishes immunogenic 
to tolerogenic environment.

Tumor-associated antigens (TAA) shows low 
immunogenicity

It is a well established that Tumor cell expressing Antigens 
(TAA) are not specifically neo-antigens that are exclusively expressed 
in tumor cells; rather they are tissue differentiation antigens also 
expressed in certain normal healthy cells [6]. Hence this creates 
the problem of generation of immune response against such tumor 
antigens. Tumor-associated antigens in early metastatic stage are 
embedded within the solid tumor [7]. The stromal cells near tumor 

Introduction
The innate and adaptive immune system work together to identify 

foreign pathogens as well as cancerous outgrowths in the host body 
and induces effective immune responses to eliminate them. But over 
the decades it has been a mystery, how tumor develops in the host in 
spite of the immune system’s potential to recognize and destroy them. 
In 1863 Rudolf Virchow first suggested that there was a functional 
relation between leukocyte infiltration and malignant growth. In 
1957 Brunet and Thomas postulated the immune surveillance theory 
which stated that the immune system can counter attack developing 
tumor in a host [1]. However, this concept remained debatable due 
to the lack of experimental evidence. After a long period in 2003, 
new evidence indicated that immune system can eliminate tumors 
through immune surveillance [2,3]. During the process of tumor 
development, the tumor microenvironment, which is composed of 
tumor cells, immune cells, extracellular matrix, and stromal cells, 
produces certain key factors that helps in fostering tumor growth, 
proliferation and also promote metastasis. During tumor progression, 
modifications occur in certain signaling pathways of immune system 
that induces tumor immune tolerance and subsequently escape tumor 
immunity. In 2003 Robert Schreiber put forward the well accepted 
immune editing hypothesis which composed of three distinct phases: 
(i) Elimination, (ii) Equilibrium and (iii) Escape. In elimination 
or immune surveillance phase immune system can recognize and 
eliminate developing tumor thus protecting host against tumor. In 
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site prevent efficient release of TAA in draining lymph nodes [8]. 
In late metastatic phase, efficient TAA release induces effective 
immunity; however immune tolerance to TAA develops by this stage 
and disables the function of APCs and other T-effector cells [9]. 
Like chronic inflammation, human tumorigenesis is a slow process 
that hampers early activation of NK cell and reshapes TAA specific 
priming to T cell specific tolerogenic responses [10] (Figure 1).

Tumor cells adopt several strategies to avoid the continuous 
surveillance by the immune system. The major processes by which 
tumor cells escape from the immune attack are outlined here.

T cell tolerance, anergy and apoptosis induces 
immunosuppression

To protect any kind of antigenic assault as well as cancer, the 
immune system possesses long term specific adaptive immune 
responses where T cells play a major role. Despite major advances 
in characterization of T cells in other infectious disease, the role of 
T-effector cells in cancer is not well understood. The phenotype and 
functionality of T-effector cells are dramatically modulated by the 
tumor microenvironment [11]. Tc cells which are present in tumor 
microenvironment recognize tumor antigens in association with 
MHC1 through the T cell receptor. CD8+ Tc cells kill tumor cells 
in a MHC1 restricted manner by perforin/granzyme, FASL- FAS 
or TNFα mediated TRAIL ligand based apoptosis [12]. Despite the 
specificity of CD8+ T cytotoxic (Tc) cells in their cell-mediated killing, 
many tumors express low levels of class I MHC molecule thereby 
perturbing such effector responses. CD4+ Th1 cells on the other hand 
enhances and supports the immune system by secreting cytokines 
such as IFNγ, TNFα and IL2 that stimulate the development of Tc 
cells and also orchestrates the activation and recruitment of innate 
immune cells [13]. Activated Th1 cells also recognize IL10-producing 
tumor-promoting M2 macrophages and convert those into IFNγ-
producing tumor-inhibiting M1 macrophages [14]. The M1 and M2 
macrophage functions are directly correlated with Th1 and Th2 cell 
responses. Th2 cells release IL4 which may block neo-angiogenesis 
indirectly [15]. Although both CD4+ Th and CD8+ Tc cells have 
immunogenic functions, but in tumor microenvironment these cells 

become tolerogenic and unresponsive towards the tumor cells [15,16]. 
These tolerogenic T cells show low to intermediate levels of TCR 
affinity against MHC restricted antigen recognition [17,18]. In tumor 
condition tolerogenic antigen presenting cells such as dendritic cells 
cross-present the tumor antigens but they can rarely activate or weakly 
stimulate self/tumor-specific T cells [19]. Tumor exposed T-cells 
also exhibit anergy and exhaustion that allow them to execute hypo-
responsiveness. T cell anergy is characterized as inability of T cells 
to produce IL2 upon re-stimulation and allowing cell cycle arrest in 
antigen-independent tumor environment [20]. In anergic state naïve 
T cells undergo low co-stimulatory and high inhibitory stimulation. 
Imbalance between this low co-stimulatory and high inhibitory 
signaling causes improper downstream TCR-mediated signaling 
through diminished protein levels and dys-regulated phosphorylation 
[20,21]. T cell exhaustion on the other side is characterized by 
progressive loss of proliferation and effector cytokine production 
resulting in T cell apoptosis [22]. In different human tumor models 
it was observed that B7H1/PD1 signaling predominated in exhausted 
CD8+ T cell and PD1 acts as exhausted T cell marker [23]. T cells 
also shows senescence properties by shortening telomere, low CD28 
expression and accumulation of cell cycle control proteins such as 
p16, p21 or p53 that inhibit cell proliferation [24,25]. Senescent T 
cell also possesses defective killing properties and induces inhibitory 
regulatory function in tumor milieu [26,27]. Memory CD8+ T cells 
and naïve CD4+ T cells also possesses stem cell like properties and 
may differentiate into different subsets of T-effector cells in varying 
circumstances of the tumor microenvironment [28]. In murine model 
it was noticed that CD44loCD62Lhi memory CD8 T cell expresses stem 
cell antigen-1, BCL2 and IL2 receptor and possesses self-renewal and 
multipotent capacity [29]. The anergy, exhaustion, senescence or 
stemness properties in T cells are major inducers of tumor immune 
evasion.

Abnormalities in antigen presentation and TCR signaling
In contrast to tumor associated antigen discrimination, tumor 

cells also avoid T cell-mediated immune response by impairment of 
antigen presenting machinery [30]. Constant generation of tumor 
variants by high frequency mutation can result in escape from the 
regime of T cell attack until some antigens are presented by stromal 
cells and cross reacted with CTLs for their elimination [31]. Down-
regulation of the antigen presenting machinery is one of the most 
common strategies exploited by tumor cells to avoid T cell immune 
response. Frequent mutation of β2-microglobulin and MHC-Iα 
chain decreases the expression MHC-I complex as well as selective 
loss of HLA alleles [32,33]. Mutation of Transporter Associated 
Proteins (TAPs) with antigen processing and components of immune 
proteasome complex LMP2 and LMP7 also induce immune evasion 
in cancer [30,32]. In metastatic stage Tumor Infiltrating Lymphocytes 
(TILs) exhibit decreased levels of CD3ζ chain and p56LCK and p59FYN 
tyrosine kinase which play a crucial role in TCR signaling that leads 
to T cell activation [31,34]. Recent study also shows that impairment 
of proximal TCR signaling inhibits CTL lytic function and restricts 
effector immune response in advance stages of cancer [35].

Negative co-stimulatory signals
Immune checkpoints that induce negative co-stimulatory signal 

also play crucial roles in tumor immunosuppression. Cytotoxic T 
Lymphocytes-4 (CTLA4) which is exclusively expressed on activated 

Figure 1: Major strategies adopted by tumor cells for immune evasion.
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T cells primarily counteract the activities of CD28 and induce 
negative inhibitory signals to restrict T cell activation [36]. After 
being engaged by TCR and antigen, CD28 strongly amplifies T cell 
activation signaling. CD28 and CTLA4 both can interact with same 
identical ligands CD80 and CD86 [37,38]. CTLA4 has higher affinity 
for both of the ligands thus outcompeting CD28 binding with CD80 
and CD86. CTLA4 binding inhibits protein phosphatase SHP2 and 
kinase PP2A that are crucial for T cell activation in tumor milieu 
[37,39,40]. CTLA4 also sequesters CD80 and CD86 from CD28 
engagement and remove them from antigen presenting cell surface 
[41]. CTLA4 is also expressed by CD4+CD25+FoxP3+ Treg cells and 
accelerate suppressor function in tumor microenvironment [42]. 
Like CTLA4 another immune checkpoint that contributes to tumor 
immune escape involves the interaction between PD1 and Program 
Death receptor Ligand-1 and -2 (PDL1 and PDL2). PDL1 and PDL2 
are also known as B7H1 and B7DC respectively. PD1 inhibits the 
kinase that activates phosphatase SHP2 during T cell activation 
[43,44]. PD1 can be expressed by Tumor Infiltrating Lymphocytes 
(TILs) in different tumors including tumor induced Treg and CTLs 
[45-47]. Two distinct mechanisms for the regulation of PDL1 by 
tumor have emerged: (i) innate immune resistance and (ii) adaptive 
immune responses. In some cancer it has been observed that 
generation of constitutive oncogenic signal in tumor cell induces the 
expression of PDL1. The expression of PD1 on glioblastoma increases 
with subsequent deletion of PTEN that associates with PI3K-AKT 
signaling [48] (Figure 2).

Various co-stimulatory interactions between T cells and Antigen 
Presenting Cells (APC) are required in addition to TCR stimulation 
from proper T cell activation or clonal proliferation. On the contrary, 
in tumor milieu the different negative co-stimulatory molecular 
interaction between T cell and Antigen Presenting Cells (APC) drive 
them to clonal energy. Some of the above mentioned negative co-
stimulatory molecules expressed on T cells are CTLA4, PD1, TIM-
3, BTLA which correspondingly interacts with CD80/86, PDL1/2, 
galectin-9, HVEM of APC.

Constitutive Anaplastic Lymphoma Kinase (ALK) signaling in 
lung cancer drives PDL1 expression through STAT3 signaling [49]. In 
adaptive immune resistance mechanisms PDL1 expression emerges 
in response to adaptation to endogenous tumor specific immune 

response. Expression of PDL1 occurs predominantly in tumor cells 
in response to PD1 specific T cells or other immune cells releasing 
IFNγ [50-52]. In addition to lymphocyte checkpoint inhibitory 
receptors B7H3 and B7H4 ligands also have inhibitory roles in cancer 
[53]. Lymphocyte Activation Gene-3 (LAG-3) is one of the major 
immune-checkpoint receptors predominantly expressed in Treg cells 
as well as other exhausted and anergic T cells that induce tolerance 
in tumor specific CD8+ T cells [54]. Galectin-9 is upregulated in 
various cancers including breast cancer that interacts with TIM3 
ligand of CD4+IFNγ+ Th1 and CD8+ CTL and induces inhibitory 
signals leading to T cell anergy and tolerance [55]. Herpes Virus 
Entry Mediator (HVEM) ligand expressed in melanoma and tumor 
associated endothelial cells interact with BTLA4 (B and T cell ligand 
attenuator-4) in virus infected CD8+ T cells and restricts antitumor 
immune response [56]. There are other several types of inhibitory 
receptors that allow such negative co-stimulatory signals that lead to 
tumor immune evasion.

Immunosuppressive factors
There are various tumor derived factors that contribute to the 

immunosuppressive network prevalent in tumor microenvironments. 
TGFβ is the pleiotropic cytokine that inhibits T cell activation, 
induces differentiation, proliferation as well as maturation of 
dendritic cells and macrophages. TGFβ is secreted by tumor 
cells and different immune cells such as Tregs, Tumor-Associated 
Macrophages (TAM) and NKT cells [57]. TGFβ specifically acts on 
CTLs to repress the transcription of perforin, granzyme and IFNγ 
that are collectively involved in tumor immune responses [58]. 
TGFβ also promotes the proliferation of macrophages and fibroblasts 
that secrete some angiogenic and anti-apoptotic factors like VEGF 
and cyclooxyginase-2 [59]. The angiogenic factor VEGF induces 
immature myeloid cells that further transform into Tumor-induced 
immature Dendritic Cells (TiDC) and TAM in the presence of other 
immunosuppressive factors such as PGE2, IL10 [60]. The increased 
levels of PGE2, IL10 and TGFβ inhibited MHC-I / MHC-II and TAP 
1/TAP2 expression on DCs and convert them into tolerogenic DCs 
that are unable to induce CTL-mediated immune responses [61,62]. 
Immunoregulatory enzyme Indole-amine 2,3 Dioxygenase (IDO) 
contributes to the establishment of immune tolerance by catalyzing 
tryptophan breakdown into kynurenine pathway metabolites [63]. 
Thus IDO depletes local tryptophan concentration and increased 
downstream metabolites confer apoptosis and anergy of T cell as well 
as induce Treg cells, TiDC and TAM [63]. Tumor derived gangliosides 
inhibits T cell activation, alter NK cell cytotoxic activities and restricts 
MHC-I and II mediated antigen presentation [64,65]. Gangliosides 
sequester IL2 and prevent it to bind to its receptor. Thus perturbed 
IL2 signaling pathway inhibits T cell proliferation [66]. In hypoxic 
tumor microenvironment macrophages release hydroxide, TGFβ, IL4 
and IL10 that contribute to immune escape (Figure 3).

The tumor microenvironment consists of higher number of 
tolerogenic cells like Tregs, TAM and tolerogenic DC and lower 
numbers of T-effector cells. The tumor mass along with these 
tolerogenic immune cells secrete a number of immunomodulatory 
factors like TGFβ, IL10, PGE2, gangliosides, galectins etc. These 
molecules foster a tolerogenic environment and block effector 
immune responses against the tumor through various mechanisms.

Figure 2: Negative Co-stimulatory signals between APC and Tcells in tumor 
microenvironment.
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Soluble FAS Ligand (sFASL) and soluble MHC class I–related 
Chain A gene (sMICA) promotes immune evasion by inhibiting 
Fas and NKG2D-mediated killing of immune cells respectively [67]. 
Soluble Phosphotidylserine (sPS) also induces anti-inflammatory 
responses to TAM that secrete TGFβ, IL10, PGE2 [68]. These 
immunosuppressive factors also enhance the expression of 
anti-apoptotic molecules such as BCLxL, cFLIP, MCL1 [69,70]. 
Galectins are glycan binding proteins that specifically bind to the 
N-acetyl-lactose amine which are attached to the cell surface by 
N-linked or O-linked glycans [71]. Galectin-1 expression positively 
correlates with aggressiveness and metastatic stages of cancer and is 
predominantly expressed by tumor cells and tumor associated stroma 
[71]. Galectins-1 induces FAS-L dependent and independent T cell 
apoptosis, blocking proximal TCR signaling and inhibits the secretion 
of Th1 type cytokine such as IFNγ, IL2, TNFα [72]. Galectin-1 is one 
of the major immune suppressive factors that contribute to tumor 
immune evasion. Galectin-3 restricts lateral movement of TCR 
complex and thus restrains TCR mediated signaling [72]. In addition 
several other immunosuppressive factors including Reactive Oxygen 
Species (ROS), Nitric Oxide (NO), mucins, increased levels of lactate, 
extracellular adenosine also contribute to immune suppression by 
targeting immune cells [73].

Dendritic cells
Dendritic Cells (DCs) are most crucial and potent Antigen 

Presenting Cells (APCs) that recognize take up, process and present 
tumor antigens to activate T cell specific immune responses. DC can 
develop from Common Myeloid Progenitor cells (CMPs) or Common 
Lymphoid Progenitor cell (CLPs) both of which differentiated through 
common Hematopoietic Progenitor Cells (HPC) [72]. In human, 
conventional DCs (cDCs) from myeloid origins are predominant. 
The plasmacytoid DCs (pDCs) which are very low in numbers mostly 
arise from CLPs but in some occasion CMPs also produce pDCs 
[72,74]. Although both the DCS originate from same progenitor, 
their differentiation is controlled by their markers, reprogramming 
by different stimuli and their specificity to antigens [75]. Activation 

of DCs leads to differential gene expression, strong co-stimulatory 
signals such as CD80/CD86/CD40 and release of effector cytokine 
that stimulate T cell activation. In different human cancers like 
prostate, breast, and malignant glioma it was found that there is 
successive loss of pDCs and cDCs whereas coexisting accumulation 
of iDCs that have reduced antigen processing and presentation 
capabilities and are unable to elicit IFNγ mediated immune response 
[72]. Decreased number of functional DCs and increased amount 
of nonfunctional iDCs causes serious obstacles that lead to tumor 
progression [76]. Accumulation of iDCs in tumor milieu promotes 
negative co-stimulatory signal that induces T cell tolerance and 
energy [77]. It was noticed that in comparison to cDCs, in many 
cancers such as melanoma and ovarian cancer, pDCs are mostly 
predominant which suppress T cell activities. Down-regulation of 
TLR9 and reduced IFNα secretion by pDCs was observed in tumor 
microenvironment that also contributes tumor antigens to escape 
from immune surveillance [78]. VEGF, IL10, PGE2, TGFβ are not 
the only immunesuppresive factors that contributes to impairment 
of DCs. Recent studies confirms that hypoxia, extracellular adenosine 
and accumulation of lactate in tumor site also made cDCs and pDCs 
nonfunctional. Hypoxia Inducible Factor-α (HIF1α) in hypoxic 
tumor condition induces adenosine receptor A2B in DCs promoting 
them to stimulate Th2 cells rather than Th1 that’s leads to type-2 
cytokine bias [79]. Differentiated DCs in tumorigenic condition and 
in the presence of adenosine lose their allostimulating activities and 
produce large amount of IL10, VEGF, IL6, TGFβ, COX2 and IDO 
[80]. In prostate tumors pDCs modulate intratumorogenic CD8+ T 
cell function by secreting ARG1 and IDO [81]. IDO producing DCs 
also induce the suppressive activities of CD4+CD25+FOXP3+ Treg cells 
that also have a major role in tumor immune evasion [82].

Macrophages
Macrophages are terminally differentiated myeloid cells closely 

linked to DCs. Immature monocytes are released from the bone marrow 
and circulate in the blood. They are recruited by chemokines into the 
tissue and undergo differentiation into macrophages [83]. Tissue 

Figure 3: Different immunosuppressive factors and their interaction with immune cells in the tumor microenvironment.
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macrophages display enormous functional and phenotypic plasticity 
in response to changing micro-environmental stimuli including 
cancer [84]. Depending on the diversity displayed by macrophages in 
terms of receptor expression, cytokine production and functions, it 
can be classified into two types: Type-1 Macrophages (M1) which are 
capable of producing large amounts of pro-Inflammatory cytokines 
(IFNγ, IL12), expressing high levels of MHC molecules, releasing 
cytotoxic ROS/RNS (reactive oxygen/nitrogen species) and are 
tumoricidal [85] and Type-2 macrophages which are activated by IL4, 
IL10, IL13 and glucocorticoid hormones and also secrete high levels 
of IL10 and very low amount of IL12 that favors tumor progression 
[86]. The macrophages present in neoplastic tissues are referred to as 
Tumor-Associated Macrophages (TAMs) and mainly belong to the 
M2 population [87]. In tumor microenvironment, T cell activation 
and dysfunctional innate immune responses are also induced 
when TAM eliminates M1 macrophages from the regime of tumor 
microenvironment. In the presence of TAM, M1 cannot produce 
IL12 therefore NK cell, Th1 cell and CTL mediated immune response 
against tumor is completely abrogated [88]. M2 macrophages secrete 
profound amount of IL10 that drive Th2 cell development. Th2 cells 
do not support the development of CTLs and IL4 released from Th2 
further induces TAM development [89]. In addition IL10 is required 
for maintaining Treg cell activities that leads to tumor progression 
[90]. TAM also released CCL22 which causes Treg trafficking into 
tumor-site. TAM secretes PGE2, TGFβ and expresses PDL1 that cause 
immunosuppression and T cell apoptosis [91]. Seven different subsets 
of TAM have been identified in mouse lung adenocarcinoma and 
breast cancer based on their receptors which includes LY6C, MHC-II, 
CX3CR1, CCR2 and CD62L etc. they have different half-lives as well 
as relative frequencies in tumor progression [92]. MHC-II negative or 
low TAMs may also induce expression of the angiopoietin receptor 
TIE2 and they localize to hypoxic sites in tumor. T cells play a major 
role in regulation of macrophages during tumorigenesis. In mouse 
mammary adenocarcinoma Th2 cells are predominant that release 
IL4 and induce TAM of M2 type. This M2-TAMs secret Epidermal 
Growth Factors (EGFs) which are involved in tumor cell invasion 
and metastasis. CD4+CD25+CD127lowFOXP3+Treg cells secreting 
cytokines IL10, IL4, IL13 induces monocytes to differentiate into 
M2 macrophages by hindering their response to Lipopolysaccharide 
(LPS). M2 macrophages also induce the expression of CD206 and 
CD163 that cause polarization of M1 macrophages. In addition to 
Treg, NKT cells and B cells encourage M2 macrophage generation 
that produce increase levels of IL10. Tumor cells also contribute to 
generate M2 macrophages with intense levels of IL10, CCL22, CCL5, 
Matrix Metalloproteinase-7 (MMP7), MMP9 etc [72,93].

Myeloid-derived (MDSC)
Myeloid-Derived Suppressor Cells (MDSCs) are a heterogeneous 

population of myeloid cells composed of immature macrophages, 
granulocytes, dendritic cells and other myeloid cells. In normal 
condition, immature myeloid cells are generated in bone marrow 
and differentiate into mature myeloid cells. In cancer, normal 
pathway of myeloid cell differentiation is hindered which leads to 
terminal differentiation of mature macrophages, dendritic cells and 
granulocytes and this generates pathological MDSCs. In human, 
MDSCs are characterized by expression of CD33, lack expression of 
HLA-DR and markers of mature lymphoid and myeloid cells. They 

are hematopoietic progenitors which can differentiate not only into 
granulocytes, monocytes but also to endothelial cells and osteoclasts 
[94-99]. Tumor-associated stromal cells form a niche which secrete 
growth factors such as GMCSF, GCSF, MCSF, Stem Cell Factor (SCF; 
also known as KIT ligand), VEGF and IL3 to induce myelopoiesis 
and chemokines such as CCL2, CCL12, CXC‑chemokine Ligand-5 
(CXCL5), prokineticin-2, S100A8 and S100A9 to mobilize and 
marginate MDSCs to tumor stroma [100,101,10]. Tumor-derived 
soluble factors that are pro-inflammatory (like IL1β, IL6, S100A8 and 
S100A9), as well as cytokines released by activated T cells (i.e. IFNγ, 
IL4, IL10 and IL13) give birth to MDSCs which initiates various 
immunosuppressive activities [102,103]. Tumor-derived soluble 
factors regulate myeloid lineage by expression of transcription factors 
such as: (a) STAT3 plays an important role in survival, proliferation 
and differentiation of MDSCs in following manner: (i) up-regulation 
of BCLxL, survivin, MYC and cyclin D1 [104], (ii) expression of 
various calcium binding pro-inflammatory protein like S100A8 and 
S100A9 [105], (iii) it promotes expression of p47phox (also known 
as NCF1) and p91phox (also known as CYBB) which secrete reactive 
oxygen species and make MDSCs more suppressive [106], (iv) down-
regulates protein kinase Cβ isoform-II (PKCβII) which is required for 
DC differentiation and maturation, up-regulates C/EBPβ [107] (b) 
STAT1 controls subsets of myeloid cells through its effects on iNOS 
expression and is crucial for immune suppression by MDSCs [108], 
(c) STAT6 activates Jumonji Domain containing protein 3 (JMJD3) 
which escalates expression of ARG1, YM1 and FIZZI1 and finally 
results to M2 polarization [109]. Additionally NFKβ, COX2 and 
PGE2 enhances MDSCs generation, accumulation and sterns their 
suppressive activity [110,111].

NK and NKT cells
NK cells are subsets of innate lymphoid cells that express 

transcription factors E4BP4 (E4-promoter binding protein-4) 
and induces apoptosis of tumor cells by secreting IFNγ, perforin, 
granzyme, or FAS-FASL, TRAIL mediated interaction [112]. NK 
cells contain inhibitory receptors that interact with MHC-I of self-
cells. Tumor cells lacking MHC-I induce hypo-responsiveness of NK 
cells and promote apoptosis [113]. NK cells also express NKG2D that 
interact with its ligand MICA and MICB (MHC-I polypeptide-related 
sequence A/B) present on tumor cells and induce effector responses 
for their clearance. NK cells contain Fc receptors (CD16) that can bind 
with antibody coated tumor cells and induce antibody-dependent 
apoptosis [113,114]. In tumor milieu release of immunosuppressive 
factors like TGFβ, IDO, PGE2 restricts NK cell activation and 
contribute NK cell tolerance. NKT cells possess both NK cell and T 
cell characteristics and restrict tumor cell proliferation [115]. NKT 
cells express αβ-TCR variant and NK1.1 receptor. NKT type I and 
II are CD1d restricted response only CD1d expressing tumor cells 
[116]. Type-I NKT cells express invariant TCRα chain – Vα14 
receptor (iNKT cells) and are stimulated by specific glycolipid ligand 
α-galactosylceramide and release increase levels of IFNγ, perforin, 
granzyme, and induce FAS-FASL or TRAIL mediated apoptosis of 
tumor cells. Whereas type-II NKT cells express heterogeneous non-
Vα14 receptors and secrete TGFβ, IL13 and activate IL4R-STAT6 
signaling that leading to suppression of CTL activities [115,116].

T-regulatory cells
Increased levels of Treg cells were found in different types of 
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cancer such as breast, lung, liver, colorectal as well as melanoma 
[117]. Treg cells bring tolerance in tumor microenvironment by 
inhibiting dendritic cell activation, promoting M2-type macrophage 
induction and induction of T cell apoptosis that triggers immune 
evasion. Both thymus-derived natural Treg (nTreg) and tumor-induced 
Treg (iTreg) contributes to tolerance and immunosuppressive activities 
in tumorogenic condition [118]. FOXP3, the master transcription 
factor and its associated protein networks play indispensable 
role for Treg development and function. FOXP3 can act both as 
a transcriptional activator and repressor. FOXP3 in association 
with NFATc2 activates CTLA4, CD25, and GITR that promotes 
suppressive function whereas the same association down-regulates 
the expression of IL2 and such deprivation of IL2 promotes T-effector 
cell death [119,120]. In a recent study it has been found that FOXP3 
acts as a co-transcription factor with STAT3 that up-regulates IL10 
transcription in tumor induced Treg cells [121,122]. Plasmacytoid 
and myeloid DCs, TAMs and tumor cells release increased levels of 
TGFβ that convert activated CD4+CD25+ T cells into FOXP3+ Treg 
cells. Apart from CD25, Treg cells express different context-dependent 
receptors such as CTLA4, GITR, and PD1 which contribute to T cell 
cycle arrest and generation of immature APCs such as dendritic cells 
that are unable to induce effector immune responses against cancer 
[123]. In tumor milieu tumor cells and TAMs secrete chemokines 
CCL22 that cause trafficking of CCR4+ Treg cells at tumor site. After 
trafficking CCL22 can interact with its receptor CCR4 and expansion 
of Treg occur at tumor site. Treg cells also produce intense levels of 
Immunoregulatory cytokines IL10 and TGFβ that promote tumor 
immune evasion by hindering the function of APCs such as DC and 
T-effector cells [123,124]. Treg cells express CTLA4 that interact with 
CD80 and CD86 ligand on dendritic cells and constrains dendritic 
cell function. CTLA4+ Treg cells also secrete IDO that catalyzes 
tryptophan breakdown and provides decreased co stimulatory signal 
to DCs. LAG3 expressed in Tregs interact with MHC-II of DCs and 
limits DC maturation and constrains its effector function as APC. 
Treg induces CD39 and CD73 that hydrolyze ATP into AMP and 
adenosine; both of them limits CD80 and CD86 costimulatory signals 
of DCs and makes them nonfunctional [125]. Nrp1 (neuropilin-1) 

secreted from FOXP3+ Treg cells interact with immature DCs and alter 
their functional activities. Treg cells also release granzyme A and B that 
induce apoptosis of CTLs, T-effector cells, DCs in perforin-dependent 
and FAS/FASL-independent manner. As IL2 is consumed by Treg cells 
through its receptor IL2Rα/CD25 that cause IL2 deprivation and 
induces BIM1-mediated apoptosis of nearby effector cells [125-127] 
(Figure 4).

There is a constant tug of war between the developing tumor and the 
immune system. Some tumor cells are highly immunogenic and elicit 
a proper immune response. In such cases effector cells like CD4+and 
CD8+ T-cells, NK and NK T-cells, anti-tumorigenic macrophages, 
mature dendritic cells are present in the tumor microenvironment 
and they secreate cytokines like IFNγ, TNFα, perforin, granzyme. 
This creates an immunogenic atmosphere and may finally lead to 
tumor regression. However some tumor cells might be converted into 
a low immunogenic type which can avoid immune recognition. They 
recruit tolerogenic cells like Treg, tolerogenic dendritic cells, tumor 
associated macrophages, myeloid derived dendritic cells. These cells 
alongwith associated cyokines like IL10, TGFβ, PGE2, Gangliosides, 
IDO, Galectins create an immunosuppressive environment that 
promote tumor growth.

Tumor immune escape and inflammation
Tumor cells induces some death receptor ligand such as FASL, 

that interact with its receptor such as FAS on T cells and triggers 
cascade of intracellular signaling that cause T cell apoptosis [72,128]. 
In contrast, expression of FASL in activated T cell and CTLs 
maintains T cell homeostasis and cytotoxic T cell activities. In some 
studies it was shown that FASL induces pro-inflammatory and anti-
tumorogenic effects in vivo. Delivery of FASL gene restricts tumor 
growth instead of tumor immune escape due to the infiltration of 
inflammatory neutrophils at tumor site [2, 129]. It has been suggested 
that immune privilege in tumors depends on presence of some 
immunosuppressive factors such as TGFβ that creates tolerogenic 
microenvironments to prevent pro-inflammatory FASL and 
eliminating immune cells that favors tumor growth. Increase levels 
of FASL induce neutrophil infiltration whereas physiological levels 

Figure 4: Modulation of different immune cells in the tumor microenvironment.
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restrict anti-tumor response and contribute tumor immune escape 
[129]. Tumor also counterattack immune cells by releasing FASL 
containing micro vesicles during tumor progression and induces 
apoptosis of FAS-sensitive lymphoid cells [130]. In some cases tumor 
cells ingest T-effector cells by a process called tumor cannibalism 
[131]. In addition to FASL some other inhibitory ligand such as 
TRAIL, RANTES have also been involved in tumor induced immune 
cell death [132]. Certain tumors induce RCAS1 ligand that facilitates 
T cell cycle arrest and apoptosis [133]. Gangliosides and CD70-CD27 
interaction in some tumors also promote T cell apoptosis [134].

Conclusion
Recent strategies for cancer immunotherapy mainly depend on 

chemotherapy and vaccination to induce CTL response, introduction 
of antibodies against immunosuppressive factors and adoptive 
transfer of T-effector cells to induce tumor regression through tumor-
immunogenicity. Although considerable success has been achieved 
through in vitro studies or preclinical trials but clinical studies 
have not produced significant results. Tumor microenvironment 
is composed of different altered immune cells, tumor cells and 
immunosuppressive factors that create serious obstacles in successful 
immunotherapy to combat cancer. Many queries regarding immune 
evasion have still not been answered. Investigation on trafficking of 
Treg cells, NKT cells, DCs in tumor surroundings or distant sites may 
provide hopes for successful immunotherapy in future. In addition 
blockade of negative inhibitory signals together with conventional 
therapy also needing further exploration. Recently several combined 
immune strategies such as blockade of CTLA4 with GM-CSF secreting 
vaccine, or chemotherapy with IDO blockade has been developed 
which provides some sort of effective immune response against 
cancer. Removal of inhibitory signals and reshaping the immune cells 
so that they target tumor cells by combined immunotherapy will be 
successful to overcome tumorigenic tolerance in future scenario.
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