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Abstract

The development of new antimycobacterial agents by focusing on 
unique drug targets related to bacterial virulence factors is urgently desired. 
For this purpose, mycobacterial proteins involved in interference with the 
host’s intracellular signalling events, which are required for the expression of 
antimicrobial functions of host macrophages (MΦs), are expected to serve 
as promising drug targets. From this viewpoint, the present review deals with 
the possible drug targets, especially those related to the M1- and M2-type 
polarization of host MΦs. 
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M1 and M2 MΦ polarization
MΦ polarization in bacterial infections, particularly those due 

to facultative intracellular pathogens including mycobacteria and 
Salmonella, is an important phenomenon for hosts [7,8]. Firstly, 
various bacteria induce the transcriptional activity of a common 
host response, which includes the expression of genes belonging to 
the M1 program, associated with MΦ polarization yielding the M1 
MΦ population, which exerts proinflammatory and/or antimicrobial 
functions. In the activation of MΦs leading to M1 polarization, the 
NF-κB-mediated cascade plays a central role in intracellular signaling 
pathways in response to the stimulation of cell surface receptors for 
proinflammatory cytokines and Pathogen-Associated Molecular 
Pattern Molecules (PAMPs), such as IL-1β receptor, TNF-α receptor, 
and Toll-Like Receptors (TLRs) [9]. Secondly, since excessive or 
prolonged M1 polarization leads to tissue injury and contributes 
to the pathogenesis [10], the M2 MΦs with immunosuppressive 
and tissue-repairing functions play critical roles in the resolution 
of harmful inflammation via the production of anti-inflammatory 
mediators [7,8,10]. Indeed, in M2 MΦs, arginine metabolism is shifted 
to the production of ornithine and polyamines via arginase 1 [11-14]. 
However, some investigators argue against the classification, because 
these MΦs might be able to change from one phenotype to another, 
differing from the case of T cell subsets [11]. These investigators prefer 
to call M1 and M2 MΦs “classically activated MΦs” and “alternatively 
activated MΦs”, respectively. In this context, Murray et al. recently 
proposed a new nomenclature for these MΦ populations (activation 
standards), such as M(IL-4), M(Ig), M(IL-10), M(GC), M(IFN-γ), 
and M(LPS), indicating stimulation scenarios (the specific conditions 
for MΦ activation) [15]. 

M1 MΦs are induced to develop by the Th1-derived cytokine 
IFN-γ alone or in combination with other macrophage-activating 
cytokines (TNF-α and GM-CSF) and certain microbial stimuli such as 
LPS. In contrast to this, Th2-derived cytokines, IL-4 and IL-13, have 

Introduction
Tuberculosis (TB), especially Multidrug-Resistant-TB (MDR-

TB), is a major global health concern since it is a highly contagious and 
life-threatening infection [1]. Moreover, intractable Mycobacterium 
avium Complex (MAC) infections, which are frequently encountered 
in AIDS patients, are currently increasing in the world [2]. Because of 
these serious situations, it is urgently necessary to develop new drugs 
exhibiting superior anti-M. tuberculosis (MTB) and/or anti-MAC 
activity by focusing on unique drug targets [3-5]. This can be achieved 
by logically designing novel antimycobacterial drugs which act on 
unique drug targets by clarifying the detailed properties of focused 
drug targets of pathogenic mycobacteria. It may be reasonable to 
design antimycobacterial compounds that are capable of blocking 
manifestation of the biological activity of bacterial virulence factors, 
especially those expressed during intramacrophage infection by 
pathogens. For this purpose, mycobacterial proteins involved in 
the bacterial interference of macrophage (MΦ) signaling pathways 
related to intramacrophage bacterial killing mechanisms may 
serve as favourable drug targets. Utilizing genomic and proteomic 
information on such virulence factors, it is possible to identify 
bacterial genes that encode potential target proteins useful for the 
development of new chemotherapeutics against mycobacteriosis. 
After elucidation of the detailed properties of such target proteins 
encoded by bacterial virulence genes, studies into practical drug 
design can be initiated by applying three-Dimensional Quantitative 
Structure Activity Relationship (3D-QSAR) analysis [6]. Notably, 
it is of marked interest to clarify the biochemical characteristics 
of bacterial proteins that crosstalk and interfere with the signal 
transduction cascades of host MΦs particularly those related to MΦ 
activation and polarization. This review article deals with the profiles 
of MΦ polarization induced by mycobacterial infection in host MΦs 
from the viewpoint of searching for unique drug targets for the 
development of new antimycobacterial therapeutics.
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been demonstrated to generate M2 MΦs [11,14]. M2 MΦs consist of 
four subpopulations: M2a MΦs (called “alternatively activated MΦs”) 
induced with IL-4 and IL-13; M2b MΦs (called “type II-activated 
MΦs”) induced with an immune complex and TLR/IL-1 receptor 
ligands via Fc receptors, complement receptors, and TLR; M2c MΦs 
generated in response to IL-10 and glucocorticoid hormones; and 
M2d MΦs characterized by an IL-10high, IL-12low M2 profile with some 
features of tumor-associated MΦs [6,7,12,16-20]. However, Murray’s 
proposal regards the M2a, M2b, M2c, M2d categories as inadequate, 
because they cause unnecessary complexity in understanding the 
modes of M2 polarization [15].

In general, M1 and M2 MΦ populations have distinct phenotypes 
because of differential profiles of gene expression as shown in Table 
1 [21]. Firstly, typical M1 MΦs possess a phenotype with high-level 
production of IL-12 and IL-23 but low-level expression of IL-10. They 
are efficient producers of cytotoxic effector molecules, such as Reactive 
Oxygen Intermediates (ROIs) and Reactive Nitrogen Intermediates 
(RNIs) and inflammatory cytokines, including IL-1β, TNF-α, and IL-
6. Thus, M1 MΦs participate as inducer and effector cells in polarized 
Th1 responses and play roles in resistance against bacterial pathogens 
and tumors [11-13]. In contrast, the various forms of M2 MΦs share 
a phenotype with low-level production of IL-12 and IL-23 but high-
level expression of IL-10. In general, M2 MΦs, typically M2a MΦs, are 
characterized by low-level production of proinflammatory cytokines 
such as IL-1β, TNF-α, and IL-6. However, M2b MΦs, which are 
characterized by high-level of IL-10 and CD86 expression, but low-
level IL-12 and arginase 1 expression, are effective producers of IL-1β, 
TNF-α, and IL-6, as in the case of M1 MΦs [12,17,20,22]. In addition, 
M2b MΦs retain high level expression of inducible Nitric Oxide 
Synthase (iNOS) and RNI production [14,20]. Generally, M2 MΦs 
have high levels of mannose (typically M2a and M2c MΦs), scavenger 
(typically M2c MΦs), and galactose-type receptors. In addition, M1 
MΦs and the various forms of M2 MΦs have distinct chemokine and 
chemokine receptor repertoires [23]. Notably, M2 MΦs principally 
play important roles in polarized Th2 reactions. For instance: (1) they 
promote the killing and encapsulation of parasites; (2) they promote 
tumor progression and tissue repair and remodeling; and (3) they 

have immunoregulatory and anti-inflammatory functions [11,24]. In 
addition, it has been reported that M2 MΦs inhibited the generation 
of M1 MΦs [24]. 

In this context, Tatano et al. recently reported interesting findings 
as follows [25]: They indicated that mycobacterial infection induces 
suppressor MΦs, which possess unique phenotypes (IL-12+, IL-
1βhigh, IL-6+, TNF-α+, iNOS+, CCR7high, IL-10high, arginase 1-, mannose 
receptorlow, Ym1high, Fizzlow, and CD163high) differing from those of M1 
and M2 populations. Interestingly, the MΦs exhibit strong activity to 
induce Th17 cell expansion in addition to their suppressor activity 
against T cell mitogenesis in response to TCR stimulation. These 
findings indicate the existence of MΦ subsets differing from M1 and 
M2 populations.

Profiles of MΦ polarization induced by mycobacterial 
infections 

The common response of MΦs to bacterial infections induced 
by intracellular bacteria, such as MTB, M. bovis BCG, and Legionella 
pneumophila, involves the up-regulation of gene expression 
characteristic of M1 polarization [7,13]. These microorganisms 
induce genes encoding cytokines such as IL-1β, TNF-α, IL-6, and 
IL-12, cytokine receptors such as IL-7 receptor and IL-15 receptor α, 
chemokines, such as CCL2, CCL5, and CXCL10, and the chemokine 
receptor CCR7. On the other hand, IL-1 receptor antagonist (IL-
1ra) appears to be the only gene associated with M2 polarization 
of MΦs that is expressed after bacterial challenge [7,26]. Some 
bacterial pathogens have evolved sophisticated strategies to prevent 
M1 polarization but promote M2 polarization [7,13]. With respect 
to mycobacterial diseases, the following profiles are known. Firstly, 
during the early phase of MTB infection, M1 polarization of host MΦs 
is evident and this is in agreement with the clinical profiles of patients 
with active TB. However, a small population of TB patients exhibits 
M2 polarization, which can be reversed by effective chemotherapy, 
suggesting the role of M2 polarization in the chronic evolution of TB 
[7]. For example, Redente et al. reported the following [27]: Soon after 
MTB infection of mice, the IFN-γ content in Bronchoalveolar Lavage 
(BAL) fluid increased, and BAL MΦs became those corresponding 

Macrophage 
populations

Stimulation/activation 
with

High-level expression of 
enzymes, receptors, etc. High-level production of cytokines, chemokines, and other molecules

M1 macrophages IFN-γ, TNF-α, LPS

iNOSb, CD80, CD86, IL-
1RI, IL2Rα, IL-7R, IL-15Rα, 
CCR7,TLR2, TLR4, FcR, 

MHC II, IPD, Batf2, COX-2

TNF-α, Type 1 IFN, IL-1β, IL-6, IL-12, IL-23, CCL2, 3, 4, 5, 8, 9, 10, 11, 15, 
19,CXCL9, 10, 11, 16,ROI, RNI

M2a macrophages IL-4, IL-13,
Arg-1c, Ym1c, Fizz1c, CD163, 
IL-1R II, CXCR4, TLR5, MHC 
II, MR, SR,COX-1, galectin-3

TGF-β, IL-10, IL-1ra, CCL13, 17, 18, 22, 23, 24, polyamine

M2b macrophages ICs, LPS, TLR, IL-1R 
ligand iNOS, CD86, MHC II, MR TNF-α, Type 1 IFN, IL-1β, IL-6, IL-10, CCL1, ROI, RNI

M2c macrophages GCs, IL-10, TGF-β
Arg-1, CD163, CD14, CCR2, 

TLR1, TLR8, MR, SR, 
galectin-3

TGF-β, IL-10, IL-1ra, polyamine

M2d macrophages 
(TAM) IL-6, LIF, MCF CD14, CD163, VEGF, ILT3, 

VTCN1 TGF-β, IL-10, CCL18, polyamine

Table 1: Profiles of M1 and M2 macrophage populationsa.

aPrevious findings described in the following papers are summarized: in References [7,11,12,16-23].
bAbbreviations Used: iNOS: inducible Nitric Oxide Synthase; IL-1R: IL-1 Receptor; TLR: Toll-Like Receptor; FcR: Fc Receptor; IPD: Indoleamine-Pyrrole 2,3 
Dioxygenase; Batf2: Basic leucine zipper transcription factor 2; COX: Cyclooxygenase; ROI: Reactive Oxygen Intermediates; RNI: Reactive Nitrogen Intermediates; 
Arg-1: Arginase-1; Ym1: M2-associated chitinase-like protein; Fizz1: cysteine-rich secreted protein FIZZ1 found in inflammatory zone (resistin-like molecule-α); IL-1ra: 
IL-1 receptor antagonist; MR: Mannose Receptor; SR: Scavenger Receptor; ICs: Immune Complexs; GCs: Glucocorticoids; LIF: Leukocyte Inhibitory Factor; MCF: 
Macrophage Chemotactic Factor; VEGF: Vascular Endothelial Growth Factor; ILT3: Ig-Like Transcript 3; VTCN1: V-set domain-containing T-Cell activation inhibitor; 
TAM: Tumor-Associated Macrophage.
cApplicable only in the case of mice.
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to the M1 subtype, as characterized by the increased expression 
of iNOS and production of RNIs. As inflammation progressed 
in the infected mice, the amount of IFN-γ in BAL fluid and iNOS 
expression by BAL MΦs decreased and, thereafter, the IL-4 content 
in BAL fluid and arginase 1 expression by BAL MΦs rose, indicating 
that M2 polarization occurred in the BAL MΦ population. A recent 
study by Guler et al. provided interesting findings as follows [28]: 
They indicated that the absence of IL-4 receptor α on MΦs did not 
play a major role in pathologic profiles of MTB infection in mice in 
terms of host mortality, bacterial burden, histopathology, or T-cell 
proliferation. Interestingly, there was no difference in the lung 
expression of iNOS (M1 marker) and Arginase 1 (Arg1) (M2 marker) 
during MTB infection between IL-4Rα-depleted and wild-type mice. 
These findings suggest that IL-4Rα-mediated signalling is not crucial 
in the generation of the M2 MΦ population, which down-regulate 
the expression of the host’s antimycobacterial resistance. Therefore, 
the concept may be reasonable that various M2 MΦ subsets, such as 
M2a, M2b, M2c, and M2d MΦs, are actually generated under specific 
immunological conditions in hosts.

Development of novel anti-TB drugs based on MΦ 
polarization-related drug targets

As previously described by the present author [5,6], a number 
of studies have been and are currently being carried out to develop 
antituberculous drugs based on novel drug targets related to 
mycobacterial virulence. To carry out such searches for new drug 
targets useful for TB drug development, it may also be reasonable 
to focus on mycobacterial virulence factors, which regulate MΦ 
polarization toward M1 and M2 MΦ subsets. Recent findings reported 
by Wang et al. indicate that maltose-binding protein of Escherichia 
coli up-regulates the expression of TLR2 and TLR4 on RAW264.7 
MΦs, which is accompanied by the subsequent activation of NF-κB 
and p38 MAPK, leading to the potentiation of IL-12 and nitric oxide 
production, characteristic of M1 MΦs [29]. Generally, mycobacterial 
components containing a lipid moiety are also known as TLR 
triggers that cause the potentiation of MΦ inflammatory responses 
and M1 polarization [30-32]. However, some of these components, 
namely lipoproteins, such as the 19-kDa LpqH protein, are known 
to inhibit the MΦ response to IFN-γ, causing the down-regulation 
of M1 polarization [33]. In addition, mycobacterial lipoglycans, 
such as lipomannan and Mannosylated Lipoarabinomannan (Man-
LAM), and Phosphatidylinositol Mannosides (PIMs) are known 
to act as potent inhibitors of host inflammatory responses because 
of their ability to down-regulate M1 polarization of MΦs [34-36]. 
In this context, Court et al. reported that PIMs are also effective in 
down-regulating the TLR2/TLR4- and TLR2/TLR6-mediated M1 
polarization of MΦs, leading to the reduced MΦ production of 
proinflammatory cytokines, such as TNF-α and IL-12 [37]. Thus, the 
TLR-mediated induction of MΦ polarization toward M2 type MΦs is 
suggestive of the active participation of TLRs, especially TLR2, in MΦ 
polarization. For instance, when two kinds of human MΦ population, 
which had already been polarized toward the M1 state by IFN-γ 
treatment or polarized toward the M2c state by IL-10 treatment, were 
re-stimulated with the TLR2 ligand P3C in combination with soluble 
immune complexes, both of these M1 and M2c MΦ populations 
were found to further polarize to the M2 MΦ subset (mainly M2a 
MΦs) with an increased ability to generate IL-10 [38]. Notably, 

Richardson et al. recently reported interesting findings whereby, 
in MTB-infected MΦs, TLR2-MyD88-mediated signaling induced 
with mycobacterial ligands, subsequently activated multiple signal-
transduction pathways and outcomes as follows [39]: (1) the NF-κB 
pathway, which leads MΦs to M1 polarization characterized by the 
potentiation of MΦ microbicidal functions, in terms of an increased 
expression of iNOS, proinflammatory cytokines like IL-12, and 
MHC II molecules, and (2) the Tpl2-ERK pathway, which leads to 
M2 polarization of MΦs, thereby causing the elevated expression of 
anti-inflammatory IL-10 and Arg1 synthesis but lowered expression 
of IL-12. The authors stated that this finding indicates that the Tpl2-
ERK pathway may contribute to immune evasion and the persistence 
of latent infection by MTB pathogens through some kinds of 
mechanism, such as an altered cytokine balance (shift from an IL-
12-dominant to IL-10-dominant state) and reduction of antigen 
processing and presentation. In this context, it was also reported 
by Khan et al. that OmpU (an outer membrane protein of Vibrio 
cholera acting as a pathogen-associated molecular pattern) induces 
M1 polarization via the activation of TLR1/TLR2 [40]. They found 
that OmpU induced the formation of the TLR1/TLR2 complex, 
leading to MyD88 recruitment to the TLR1/TLR2 complex and the 
subsequent recruitment of IRAK1 followed by the activation of the 
NF-κB pathway, causing M1 polarization. 

The signaling pathways of MΦs at the downstream of TLR2 
and IRAKs are important for signal transduction [31]. IRAK-4 
plays important roles in TLR2-originated signaling cascades for 
the up-regulation of MΦ antimicrobial functions characteristic of 
M1 polarization. Deleterious mutations in the IRAK-4 gene cause 
an increase in host susceptibility to bacterial infection because of 
MΦ unresponsiveness to TLR ligands [41]. On the other hand, 
IRAK-M is known to act as a negative regulator of TLR signaling 
[36]. Notably, Man-LAM of MTB has been reported to suppress 
TLR4-mediated M1 polarization of MΦs, based on the induction of 
IL-12 expression by MΦs, through an IRAK-M-mediated signaling 
pathway [36]. In this case, Man-LAM inhibits IRAK-TRAF6 
interaction, directly attenuating activation of the NF-κB-mediated 
pathway by inducing the expression of IRAK-M. In this context, 
Manda-Lala, et al. reported an interesting finding that MTB restricts 
the M1 polarization of MΦs and reduces proinflammatory responses 
of MΦs through its cell envelope-associated serine hydrolase, called 
“Hydrolase important for pathogenesis 1” (Hip1) [42]. According to 
them, MΦs stimulated with the hip1-KO MTB mutant strain generate 
higher levels of proinflammatory cytokines (TNF-α, IL-1β, IL-6, 
etc.). In the case of MΦ activation due to infection with the hip1-KO 
MTB mutant, the enhanced activation of the TLR2-MyD88 signaling 
pathway is responsible for the elevated cytokine production. Notably, 
Hip1-mediated blocking of TLR2 signaling is dependent on the 
enzymatic action of Hip1. Therefore, it is thought that Hip1 restricts 
the onset and magnitude of MΦ proinflammatory cytokine response 
by limiting TLR2-dependent activation in an enzymatic activity-
dependent manner. With special reference to TLR4-mediated MΦ 
polarization, the following has been reported: Firstly, the heat shock 
protein DnaK of Francisella tularensis has been reported to induce 
the activation of MAPKs and NF-κB in Dendritic Cells (DCs) and 
production of the proinflammatory cytokines IL-6, TNF-α, and IL-12, 
as well as low levels of IL-10, and the up-regulation of CD40, CD80, 
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and CD86 characteristic of M1 polarization [43]. In contrast, Lopes 
et al. recently reported the opposite finding whereby mycobacterial 
DnaK polarizes murine born marrow-derived MΦs and peritoneal 
MΦs to the M2-type phenotype [44]. They reported that treatment of 
MΦs with DnaK protein from MTB causes the M2-type polarization 
of MΦs, based on the increase in Arg1 activity and IL-10 production 
and the potentiated expression of Fizz1, Ym1, and CD206. Moreover, 
the DnaK-treated MΦs acquired a tumor growth-promoting ability. 
The different findings between the above two studies may be due to a 
difference in the experimental conditions used by these researchers, 
that is, differences in test phagocytes (MΦs and DCs) and bacteria 
(F. tularensis and MTB). Irrespective of this, these findings indicate 
that promising drug targets related to mycobacterial virulence factors 
for the development of novel antituberculous agents may be explored 
among mycobacterial components, which regulate intracellular 
signaling pathways linked to TLRs, particularly those located in the 
downstream pathways of TLRs, thereby determining the courses of 
MΦ polarization.

The development of new drugs for the treatment of TB has been 
slow. Indeed, only limited numbers of new drugs, including rifabutin, 
rifapentine, delamanid, and bedaquiline, have been approved 
for clinical use [45,46]. Thus, it is also desirable to improve the 
pharmacokinetics of TB drugs in terms of in vivo drug stability and 
drug delivery. Since MTB can persist in the intramacrophage milieu 
for a long period of time, ideal therapy for TB requires the effective 
delivery of anti-TB drugs into MΦs, especially into bacteria-engulfing 
phagosomes of MΦs. Firstly, liposomes are ideal lipid vesicles 
for directing TB drugs to infection sites [47,48]. Using liposome-
encapsulated drugs, it is possible to deliver the total dose required over 
a prolonged time period in a single administration, without causing 
any severe side effects. Moreover, liposome technology enables the 
highly targeted delivery of the drugs to host MΦs. Although there are 
few studies on the effects of liposomal vesicles on MΦ polarization, 
some researchers reported interesting findings, as follows: Cruz-Leal, 
et al. indicated that mouse peritoneal MΦs were activated to the 
M2 state by treating them with ovalbumin-encapsulating liposomes 
comprising phosphatidylcholine and cholesterol, leading to high Arg1 
activity [49]. Nevertheless, responding to LPS stimulation, such M2-
type MΦs were re-differentiated to the M1 phenotype, characterized 
by the high-level production of nitric oxide and decreased generation 
of IL-10 [49]. This indicates that the liposome vesicle itself can induce 
an M2-like profile in peritoneal MΦs, which is reprogrammable 
to the M1 phenotype in the presence of M1-polarization signals 
induced by LPS stimulation. In this context, liposomal vesicles of 
dipalmitoylphosphotidylcholine have been reported to potentiate 
the activation of peritoneal MΦs responding to LPS stimulation 
in terms of the expression of cytotoxic activity against tumor cells 
[50]. Interestingly, the combined effect of the liposomes and LPS in 
up-regulating MΦ M1 polarization is correlated with the changes 
in the properties of the rough endoplasmic reticulum membranes 
of MΦs [50]. Secondly, some investigators have been assessing the 
usefulness of microsphere technology [51,52]. This technology 
facilitates effective chemotherapy against intractable TB. Barrow 
et al. developed microspheres comprising lactide and glycotide 
copolymers (poly (lactic-coglycolic acid): PLGA) as biodegradable 
and biocompatible excipients for antituberculous drugs [53]. 

Such microsphere preparations enable the controlled release of 
encapsulated drugs over long periods [51]. Although there have 
been only very limited numbers of studies with special reference to 
the effects of microsphere particles on MΦ polarization, Bitencourt 
et al. reported an interesting finding whereby certain types of PLGA 
microsphere induced NF-κB activation in J774-1 murine MΦs, 
leading to the M1 polarization accompanied with up-regulation of 
the MΦ TNF-α producing ability [54]. Notably, it was reported by 
Nagao et al. that lipid rafts on the cell membrane of mouse J774 MΦs 
and rat alveolar MΦs play an important role in the internalization 
of polystyrene latex microspheres during MΦ phagocytosis [55]. 
However, they reported the very limited participation of lipid rafts in 
the signal transduction, which is related to MΦ activation toward M1 
polarization in terms of the increased expression of proinflammatory 
cytokines (TNF-α, IL-1β, and IL-6) l [55]. Taken together, these 
findings on the effects of liposomal and micrsphere particles upon the 
direction of MΦ polarization suggest that it is important to consider 
such situations on the practical use of drug-delivery systems, based 
on liposome- and microsphere-encapsulated antituberculous drugs, 
for the clinical treatment of TB patients.

Concluding Remarks
The present global prevalence of TB strongly necessitates the 

accelerated development of new antituberculous drugs based 
on unique antimicrobial mechanisms. It is reasonable to design 
antimycobacterial agents that are capable of blocking expression 
of the biological activity of virulence factors of MTB organisms, 
particularly those expressed during intramacrophage infection. Since 
the whole MTB genome contains as many as 4,000 genes, our studies 
must be undertaken by selectively focusing on a small number of 
target proteins. In this context, it is of marked interest to clarify the 
molecular and biological characteristics of bacterial proteins, which 
play significant roles as virulence factors by interfering with the 
signal transduction cascades of host MΦs. A number of researchers 
are currently engaged in studies to elucidate action profiles of 
mycobacterial proteins in intramacrophage signalling pathways. As 
described in the above sections, MTB proteins acting as virulence 
factors affecting MΦ signalling events, which play important roles 
in MΦ polarization, may be promising as drug targets for the 
development of novel anti-TB drugs. The molecular biological 
information concerning such types of mycobacterial virulence factor 
will serve as a useful experimental tool for drug design based on 
3D-QSAR analysis [6,56].
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