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Abstract

The present study aimed to compare the hydrogen and methane productions 
by microbial consortium designated MC1 (Clostridium, Bacillus, Bacteroides 
and Paenibacillus genus) and MC2 (Clostridium, Raoultella, Klebsiella and 
Desulfovibrio genus). Both tests used hydrothermally pretreated Sugarcane 
Bagasse (SCB) as substrate in mesophilic conditions (37ºC). The maximum 
hydrogen productions were 5.33mmol/L for MC1 and 2.45mmol/L for MC2. 
Methane was produced only by the MC2, reaching 53.65mmol/L. Thus, the 
culture of MC1 can be used as a source of fermentative hydrogen producer 
while the MC2 can be a promising source of methanogenic microorganisms 
which can improve the biogas production.
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Cellulolytic substrate

(30-55%) and lignin (20-30%) [3]. In this context, pretreatments 
have been applied to disrupt the biomass components (cellulose and 
lignin) and improve the enzymatic digestibility. So, the applicability of 
pretreatments at industrial scale should be considered i.e., economic 
viability, minimum generation of microbial inhibitory compounds 
and fewer environmental impacts [7]. Hydrothermal pretreatment 
is a process applied to liberate sugars from lignocellulosic materials 
releasing two fractions, a solid fraction, mainly containing cellulose 
and lignin, and a liquid fraction (hydrolyzed) containing pentose 
and hexose. This process can be performed without the addition of 
chemicals, making it a potential solution for the pretreatment of large 
quantities of lignocellulosic substrates [8].

The origin of inoculum is also an important factor that affects 
the biogas and hydrogen production from lignocellulosic biomass, 
because a small microbial variety can produce cellulolytic enzymes 
responsible for efficient degradation of the crystalline cellulose 
structure. Moreover, microbial consortium can work synergistically 
to produce all enzymes needed for complete cellulose bioconversion 
[9]. In addition, the use of microbial consortium makes the process 
simpler, from the point of view of operation and control [10], it is 
a more robust alternative. The great advantage of the microbial 
consortium application is regarding the ability to convert many 
substrates due to its metabolic flexibility, when compared to the pure 
cultures [11]. Therefore, this study evaluated the effect of inoculum 
origin on the hydrogen and biogas production from hydrothermally 
pretreated Sugarcane Bagasse (SCB).

Materials and Methods
Raw materials sugarcane bagasse

The sugarcane bagasse used in this study was provided by São 
Martinho sugarcane mill (Pradópolis, SP, Brazil).

Introduction
The hyper-consumption of non-renewable resources, mainly 

fossil fuels, has resulted in unprecedented levels of greenhouse gas 
emissions which are related to carbon dioxide emissions, considered 
the major cause of current global warming and climate change 
[1]. Therefore, research and development on biological hydrogen 
production using microorganisms has advanced, which may relieve 
the pressure caused by carbon dioxide emissions and the depletion of 
fossil fuel resources [2].

Hydrogen must be generated from renewable raw materials 
and used as renewable source of energy. Agricultural waste is a 
promising alternative biomass to renewable energy production once 
different kind can be utilized as feedstock for the biological ethanol, 
hydrogen and biogas productions [3,4]. The relative abundance, the 
world-wide distribution of these cellulosic materials is attractive 
factors for generating biotechnological products. The bioconversion 
of lignocellulosic compounds into hydrogen and biogas can occur 
at ambient temperature and atmospheric pressure, which is other 
attractive condition to biohydrogen production [5].

Sugarcane Bagasse (SCB) is a residual product of sugarcane 
processing, which is one of the most important process adopted 
in Brazil for fuel production. This residue is used as animal feed or 
burned to energy recovery. Nevertheless, it could be used as substrate 
for second generation bioethanol, methane [3] and hydrogen 
productions [6]. The bioproduction of hydrogen and biogas is 
recognized as a very promising, environmental friendly and feasible 
strategy [5], although some factors can affect its effectiveness.Among 
the factors that affect the bioconversion of lignocellulosic wastes into 
bioenergy, the high lignin content and cellulose crystallinity have 
been considered the main cause of low digestibility of the substrate. 
The SCB is basically composed of cellulose (40-45%), hemicellulose 
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Pretreatment of sugarcane bagasse
The hydrothermal pretreatment of SCB was carried out in a 

stainless steel-reactor. The reactor was previously filled with 100mL of 
water, and then, 5.0g of the substrate was introduced. After substrate 
addition, the reactor was turned on and set to operate at 200°C with 
a pressure of 15bar. After 10 minutes under these conditions, the 
reactor was depressurized and shut down. The solid fraction was 
collected, dried at ambient temperature for 48 hours, and used in the 
experiments.

Microbial consortium
Two microbial consortium designated MC1 and MC2 were 

collected from cultivation of anaerobic hydrogen-producing 
bioreactor with cellulose and from sludge of a facultative pond 
of a paper and pulp mill Wastewater Treatment Plant (WWTP), 
respectively.

The bacterial communities from MC1were identified and 
characterized by 16S rRNA gene sequence analysis. It was mainly 
composed by Clostridium, Bacillus, Bacteroides and Paenibacillus 
genus. The sequencing data of MC1 was deposited in NCBI Sequence 
Read Archive under the accession number of PRJNA383576. The 
MC1 was cultured in Reinforced Clostridia Medium, and preserved 
as frozen stocks at -80°C in 50% glycerol. Before each batch test, 
aliquots (0.2L) of the frozen stocks were cultured in Reinforced 
Clostridia Medium (1.8L) for 48 hours and then used as inoculums 
(107CFU/mL).

The MC2 was mainly composed of Clostridium, Raoultella, 
Klebsiella and Desulfovibrio genus, as reported in previous study [12]. 
The sequencing data of the microbial consortium were deposited in 
NCBI Sequence Read Archive under the accession number KP715408, 
KP715409, KP715412 and KP715410. The MC2 was enriched in 5L 
Duran®flasks, in which 40% was composed of reaction volume and 
60% of headspace (N2 100%). Reaction volume contained 1.8L of the 
enrichment medium (10g/L of yeast extract, 5g/L of tryptone and 
10g/L of glucose) and 0.2L of the sludge. The initial pH was adjusted 
to 6.8 with HCl (1.0M). The system was incubated at 37°C for 48 
hours.

Both microbial consortium were previously subjected to a total 
anaerobic bacteria count onto Reinforced Clostridia Medium plates 
(Oxoid, UK) and incubated at 37°C for 48 hours in anaerobic jars for 
enumeration, in order to maintain the same concentration of bacteria 
in each reactor (107CFU/mL).

Biohydrogen and biogas production in batch reactors
Hydrothermally pretreated sugarcane bagasse was used as 

substrate for the biohydrogen and biogas production through dark 
fermentation. This step was carried out in triplicate using1.0L batch 
reactors, with a 0.5L working volume constituted by the culture 
medium (PCS), inoculum (MC1 or MC2) and the substrate (5.0g/L). 
Nitrogen (N2, 100%) gas was flushed into the reactors to create 
anaerobic conditions. The reactors were closed with rubber stoppers 
and incubated at 37ºC. A control assay without sugarcane bagasse 
was also conducted.

Culture medium used in batchreactors
PCS (peptone cellulose solution) was used as a culture medium 

as previously reported (Haruta et al. 2002). The constitution of the 
culture medium was: yeast extract (1.0g/L), peptone (5.0g/L), CaCO3 
(5.0g/L) and NaCl (5.0g/L). 

Analytical procedures
The biogas composition in the headspace was determined by a 

gas chromatography (Shimadzu GC-2010) equipped with a thermal 
conductivity detector using argon as the carrier gas. The temperatures 
of the injector, detector and column were 30°C, 200°C and 300°C, 
respectively. An aliquot (0.5mL) of gas samples were collected from 
each pressurized reactor with a pressure-lock gastight syringe. The 
pH and Volatile Solids Concentration (VSS) were determined in 
accordance with APHA (2005) [14]. Soluble carbohydrates were 
determined using the colorimetric phenol-sulfuric acid method [15]. 
The determination of Volatile Organic Acids (VFA) and alcohols 
was performed using a High Performance Liquid Chromatography 
(HPLC Shimadzu) in accordance with Penteado et al. (2013) [16].

Kinetic parameters
The experimental data was fit to the mean values of the triplicate 

sets of reactors using the Statistica 8.0 software. The average of the 
hydrogen evolution data was adjusted to the modified Gompertz 
model [17], which has been described as a suitable model for 
the adjustment of accumulated biogas production data in batch 
experiments [4].

In the modified Gompertz equation (Eq. 1), H is the cumulative 
hydrogen production, t is the time of operation (days), P is the 
maximum hydrogen production potential (mmol/L or mL/L), Rm is 
the maximum hydrogen production rate (mmol/L.day or mL/L.day), 
λ is the lag-phase period (day) and e is 2.71.

( )exp exp 1mR eH P t
P

λ •  = • − − +    
   (1)

The hydrogen yield (mL H2/g SCB) was calculated as hydrogen 
production (mL/L) divided by SCB concentration added (g SCB/L).

Results and Discussion
Hydrogen production

The hydrogen production (Figure 1) from MC1 was higher 
(5.33mmol/L) than hydrogen production from MC2 (2.45mmol/L).

In the MC1, cellulose-degrading and hydrogen-producing 
bacteria, namely, Clostridium, Bacillus, Bacteroides and Paenibacillus, 
converted sugarcane bagasse into hydrogen.

Clostridium has been reported as dominant in fermentation 
process for hydrogen production [18]. Furthermore, many Clostridium 
species such as C. cellulovorans, C. drakei, C. hungatei, C. jejuense, C. 
aldrichii, C. carboxidivorans, C. celerecresces, C. cellulofermentans, C. 
cellulolyticum and C. phytofermentans are cellulolytic bacteria [19] 
and are able to degrade the SCB. Ho et al. also identified bacteria of 
the genus Clostridium from cloning and sequencing of DGGE bands 
in hydrogen production test from cellulosic substrates using sewage 
sludge as inoculum [20].

Bacillus sp. are also reported as hydrogen-producing [21,22]. 
Kotay and Das isolated Bacillus coagulans from aerobically digested 
activated sewage sludge and obtained maximal hydrogen yield 
(2.28mol H2/mol glucose) [23].
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The Bacteroides genus has cellulose-degrading as well as 
hydrogen-producing species, such as B. cellulosolvens and B. 
xylanolyticus, respectively.

Paenibacillus sp. isolated from agricultural soils, wastewater 
sludge and cow dung was described as hydrogen producer [24].

In this study, the bacterial community probably was responsible 
for high hydrogen production from SCB. The MC1 has significant 
advantages over MC2, concerning the hydrogen production since 
there are no hydrogenotrophic microorganisms.

In the MC2, there are Clostridium, Raoutella, Klebsiella and 
Desulfovibrio genus. Cellulolytic bacteria, such as Clostridium sp., and 
non-cellulolytic bacteria, such as Klebsiella sp., can establish mutual 
associations in natural environments where cellulose is degraded [25]. 
Cavedon & Canale-Parola analyzed the interaction between these 
microorganisms and reported that Clostridium sp. degraded cellulose 
releasing soluble sugars which were used as substrate for Klebsiella 
sp. Meanwhile, Klebsiella sp. produced growth factors (biotin and 
p-amino benzoic acid) used by Clostridium sp. In our study with 
MC2, Clostridium and Klebsiella were probably acting syntrophically 
for the cellulose degradation [26].

Bacteria of the genus Desulfovibrio presents versatility in 
the use of carbon sources [27] and some species are capable of 
chemolithotrophic growth, using hydrogen as an electron donor and 
assimilating acetate, carbon dioxide or yeast extract as a carbon source 
[28]. In the present study, the substrates required for Desulfovibrio sp. 
may have favored the growth and maintenance of these bacteria in 
the reactors with MC2, and can justify the low hydrogen production.

The results of the production, rate, and yield of the hydrogen 
reflect the distinct abilities to degrade SCB of different microbial 
communities (Table 1).

The maximum hydrogen production (P) rate obtained with 

MC1was lower (3.8mL/L.day) than MC2 (2672.3mL/L.day) (Table 1). 
Significant difference in the production rate might be due to the fact 
that total hydrogen production in MC2 was reached to maximum in 
1.6 days afterwards it was taken as a substrate to produce metabolites. 
Dark fermentation by natural microbial consortium is a process 
evolved to maximize the cell growth and allows the use of many 
substrates [7]. However, the by-products of fermentation (hydrogen, 
volatile fatty acids, and alcohols) are ultimately converted into 
methane [29].

In the literature, the number of investigations with the solid 
fraction of SCB hydrothermally pretreated is scarce, possibly due 
to the complexity of this substrate, however the hydrolysate is most 
commonly used [6,30].

Pattra et al. used hydrolyzed SCB without rind and small particle 
size (<0.5 mm) for hydrogen production by Clostridium butyricum 
[6]. The substrate was hydrolyzed using H2SO4 (50%) for 60 minutes 
at 121ºC, 1.5kg/cm2 in autoclave. At these conditions, 11g glucose/L; 
11.29g xylose/L; 2.22g arabinose/L; 2.48g acetic acid/L and 0.12g/L 
furfural were obtained in the hydrolysate of sugarcane bagasse. 
Hydrogen yield of 1.73mol H2/mol total sugar was obtained.

Cheng and Chang also reported high yields of hydrogen using 
hydrolyzate of SCB in a separate hydrolysis and fermentation process. 
Alkaline-pretreated bagasse was hydrolyzed by cellulolytic enzymes 
extracted from Pseudomonas sp. [30]. Thereafter, the bagasse 
hydrolysate was fermented in batch reactors at 37°C and pH 6.0 by 
Clostridium pasteurianum. The authors obtained a maximum H2 
production of 1420.0mL/L.

The hydrogen yield obtained with MC1 was lower than the works 
mentioned-above, probably due to the solid fraction of pretreated 
SCB used as a substrate in the present study in comparison to the 
hydrolysate (liquid fraction of the pretreated SCB) used in the reported 
studies. The solid fraction has larger particles which may have affected 
SCB hydrolysis. The complex structure of the lignocellulosic materials 
creates physical and chemical barriers, making hydrolysis difficult 
and can justify the low hydrogen yield obtained in this condition [31].

In the present study, both the fermentation and hydrolysis 
proceedings were performed using microbial consortiums, 
highlighting the bacterial capacity to degrade SCB from fermentative 
metabolism.

Ratti et al. using endogenous microorganisms from unpretreated 
SCB as inoculum and pretreated SCB (steam explosion and alkaline 
delignification) as substrate (2.0g/L) obtained 7.04 mmol H2/L in 
comparison to 5.33 and 2.45mmol H2/L obtained in MC1 and MC2, 
respectively [4].

The results of the hydrogen production with MC2 (54.9ml/L) 
can be explained by the variety of microorganisms present in the 
consortium, which can produce hydrogen at a faster rate (2672.3mL/L. 
day). However, there is also the consumption of this hydrogen by 
other microorganisms, such as Desulfovibrio sp. or methanogenic 
archaea. Microbial consortium from environmental sources contains 
hydrogen consuming microorganisms, such as methanogens that 
consume hydrogen as electron donor and decrease its yields [29].

Figure 1: Hydrogen production profiles.

P Rate Yield

(mmol/L) (mL/L) (mL/L.day) (mL/g SCB)

MC1 5.33 119 3.8 59.5

MC2 2.45 54.9 2672.3 27.4

Table 1: Production (P), rate and yield of hydrogen from SCB.
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Methane production
Methane was produced only using MC2 as inoculum, reaching 

377.66mL/g TVS after 480 hours of incubation time. Similar methane 
yield was obtained by Liu et al. from a SCB still age (306.97mL/g VS) 
after 144 hours in batch reactor at mesophilic condition (35ºC) [32].

The bioconversion of lignocellulosic biomass to methane is 
performed by a specific microbial consortium [33], which could be 
composed of a large variety of microorganisms such as the producers 
and consumers of hydrogen which are involved in many different 
biochemical pathways, resulting in a complete degradation of the 
feedstock and improving the value-added product. Methanogenic 
anaerobic digestion has been recurrently performed and is 
advantageous over aerobic systems due to its high organic removal 
rates, low energy requirement, high energy production (as methane) 
and low sludge generation [34]. Bioconversion of lignocellulosic 
compounds to methane is an attractive process that has been applied 
around the world. At the end of the operation time (480h), the biogas 
content was formed by 50% of CH4 and 50% of CO2 (Figure 2).

Production and consumption of soluble sugars
In the reactors inoculated with MC1, the sugar concentration 

increased to 334.8mg/L in 29 hours with subsequent consumption. 
On the other hand, in MC2 assays, the soluble sugar concentration 
increased to 127,0 in the first 15 hours that readily consumed in 29 

hours, achieving a concentration of 50.1mg/L. After this time, the 
soluble sugar tends to increase up to 267.3mg/L at 264 hours (Figure 
3). Ratti et al. obtained similar profile with the use of microbial 
consortium and sugarcane bagasse as substrate from hydrogen 
production. The increased concentration of soluble sugars in the 
reaction medium can indicate the cellulolytic capability of the both 
culture and the use of soluble sugars to produce energy.

Production of Volatile Fatty Acids
To determine the predominant metabolic pathways with the use 

of microbial consortium or natural microbial consortium, Volatile 
Fatty Acids (VFA) were measured in the samples collected at four 
different phases: reactor initiation, lag phase, exponential phase of 
hydrogen production, and at the end of each experiment (Figure 4).

VFA production was observed for both inoculum sources. 
Metabolites produced by MC1 reactors resulted into a higher 
production of acetic acid (845.7mg/L), accounting for 40% of total 
acids produced. Acetic acid was also the main product of cellulose, 
avicel and cellobiose fermentation by Clostridium sp. during 
hydrogen production (Ren et al.). For the SCB and others substrates, 
the production of acetic and butyric are preferable, according to Eqs. 
(2) and (3), once 4 and 2 moles of hydrogen, respectively, are formed 
during the fermentation [36].

6 12 6 2 3 2 22 2 2 4C H O H O CH COOH CO H+ → + +   (2)

6 12 6 3 2 2 2 22 2 2C H O CH CH CH COOH CO H→ + +   (3)

The acetic and butyric acids totaled more than 50% of total acids 
produced in MC1 as well as MC2.

For MC2, the VFAs was an intermediate compound which was 
produced and also removed. During the time of hydrogen production 

Figure 2: Biogas and hydrogen content along the time on the MC2.

Figure 3: Concentration of soluble sugar (mg/L) in the hydrogen production 
reactors.

Figure 4: Concentrations of the main fermentation products observed in the 
initial time, Lag phase exponential (16 hours), exponential phase time (150 
hours for the MC1 and 30 hours for the MC2) and final time (480 hours) for the 
final batch tests performed using SCB as substrate. MC1 (A) and MC2 (B).
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with microbial consortium (initial time to exponential time), butyric 
(187.6 to 1184.6 mg/L) and acetic (282.3 to 1184.0 mg/L) acids 
were produced, whereas during the hydrogen production decline 
(exponential time to final time) the propionic and valeric acids were 
mainly produced (81.5 to 334.3 and 184.4 to 862.9 mg/L, respectively). 
The propionic acid has been reported in microbial consortium due to 
some symbiotic nature or syntrophic interactions [37].

Therefore, VFA results indicate that different metabolic pathways 
predominate in the presence of different cultures during SCB 
fermentation.

Conclusion
The hydrothermal pretreated sugarcane bagasse can be used 

as a substrate for hydrogen and methane production through dark 
fermentation. It was possible to observe the increased concentration 
of soluble sugars in the reaction medium which may indicate the 
cellulolytic capability of both cultures. Microbial consortium of 
Clostridium, Bacillus, Bacteroides and Paenibacillus genus can be 
used as a better fermentative hydrogen producer while the natural 
microbial consortium of paper and pulp mill WWTP is promising 
for methanogenic microorganisms, which can improve the overall 
biogas production. During the SCB conversion, the principal VFA 
formed by microbial consortium was acetic acid, whereas, propionic, 
butyric and valeric acids were also produced by the natural microbial 
consortium.
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