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Remote ischemic preconditioning is an endogenous phenomenon 

in which the application of one or more brief cycles of non-lethal 
ischemia and reperfusion to an organ or tissue protects a remote 
organ or tissue from a sustained episode of lethal ischemia [1]. So 
far, the neuroprotective drug therapy has been a dismal failure in 
clinical stroke trials. In addition, numerous reviews have suggested 
major limitations of neuroprotective stroke clinical trials at both 
the research preclinical and clinical levels [2]. Based on the fact that 
early exposure to a non-injurious preconditioning stimulus confers 
an ischaemic tolerance to a subsequent ischemic challenge in the 
brain [3]. Therefore, targeting mechanisms of innate cytoprotection 
present an alternative strategy for drug development based on the 
reproducibility of neuroprotection against ischaemia achieved in 
many varied models of preconditioning. 

In general, the mechanisms underlying the phenomenon of 
remote ischemic conditioning (RIC) can be considered inter-related 
events start with initial events occurring in the remote organ or 
tissue in response to the RIC stimulus, the protective signal which is 
conveyed from the remote organ or tissue to the target organ or tissue 
and the events occurring in the target organ or tissue which confer the 
protective effect [1]. The initial events of preconditioning stimuli occur 
at the cellular levels in the remote tissues or organs. It possible to be 
a quick response in the cellular defence function to the stress factors 
for health maintenance inside the cell. The cellular response involves 
changes in ion channels permeability, protein phosphorylation and 
post-translational modification via a signal transduction system. 
These events represent a transient protective phenotype that can be 
induced within minutes of exposure to preconditioning stimuli [4]. 
The signals generated from preconditioning stimulus may include 
blood-borne factor (s), neuronal mechanisms, and/or systemic 
responses. Intriguingly, plasma from human volunteers subjected 
to remote ischemic preconditioning protected human endothelial 
cells from hypoxia-induced cell damage indicating to compromising 
blood- born elements [5]. Such elements has been reported to 
involve nitric oxide, stromal derived factor-1 alpha, microRNA-144, 
microRNA-1, but also other, not yet identified factors [6,7]. Major 
advances in myocardial RIC came with the use of skeletal muscle as 
the ischemic stimulus can be transferred, even across species, with 
plasma-derived dialysate [7]. Another study showed that RIC applied 
on the hind limb activated lymphocyte cell kinase (Lck) mediating 
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neuroprotection through PKCε-Lck-Fyn pathway [8]. The activated 
lymphocyte may involve in transmitting pro conditioning stimuli 
from remote organs like hind limb to the brain, that needs further 
investigation. The events in the target organs involve long term 
response that may extend to weeks or perhaps months. The long term 
response after RIC in the target organs compromise orchestrated 
reprogramming mechanisms that confer neuroprotection [9]. For 
instant, Intracardiac signal transduction events involve: adenosine, 
bradykinin, cytokines, and chemokines, which activate specific 
receptors; intracellular kinases; and mitochondrial function [7].

It has been reported that long term response to preconditioning 
stimulation may lead to induce genomic reprogramming and regulate 
cellular homeostasis process such as autophagy. For example, 
cytosine-phosphate-guanine (CpG) evokes preconditioning stimulus 
though Toll- like receptors activation. Based on that, brain miRNA 
expression in response to CpG preconditioning showed that miRNAs 
regulate endogenous responses to stroke and that manipulation 
of these miRNAs may have the potential to acutely activate novel 
neuroprotective processes that reduce damage [10]. Moreover, gene 
expression of the unfolded protein response (UPR) is affected by 
preischemic treatment by increasing the expression of Ca2+ binding 
protein: GRP 78 and transcriptional factor ATF6 in reperfusion times. 
Thus, ischemic preconditioning exerts a role in the attenuation of 
endoplasmic reticular stress response, which might be involved in the 
neuroprotective phenomenon of ischemic tolerance. Another aspect 
to be consider is that preconditioning regulates cellular autophagy, an 
intracellular catabolic process in which the cytoplasmic constituents, 
such as aggregated proteins and dysfunctional organelles, are 
surrounded by a double membrane, termed the autophagosome, 
and are transported to lysosomes for degradation and recycling 
[11]. The endoplasmic reticulum (ER) of neural cells responds to the 
interruption of blood flow by the unfolded protein response (UPR), 
which can be highly variable, depending on dosage and duration of 
ischemic treatment, and intensity of UPR signals [12]. Consequently, 
factors which have an effect on autophagy in human brain like 
normal aging, reactive oxygen species (ROS), methylation silencing 
of autophagy genes may attribute in ischemia tolerance [13,14]. 
Therefore, there is a growing body of evidence shows that certain 
level of autophagy activation is associated with neuroprotection 
due to ischemic preconditioning stimuli [15,16]. However, the 
contribution of autophagy to ischemia preconditioning-associated 
neuroprotection remains incompletely investigated.

From an evolutionary point of view, it is well known that successful 
adaptation to environmental stress ensure survival. In this context, 
we hypothesize that genomic and cytophysiological alterations due 
to IRC stimuli can be magnified for long- lasting neuroprotective 
phenotype that may promote gross- generation adaptation. 
Interestingly, cross-generational adaptation to cerebral ischemia 
seen in the stroke-prone spontaneously hypertensive rat (SHRSP) 
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is retained in the first filial generation of rats. The first filial males 
that received Y chromosome from SHRSP parents showed decreased 
sensitivity to the ischemia than those with Y chromosome inherited 
from reference strain [17]. Another significant aspect is an epigenetic 
response that may result in cell adaptation to environmental stimuli. 
One of suggested mechanisms is the ability of environmental factors 
to trigger epigenetic changes in eukaryotic cells, thus contributing 
to transient or stable, and potentially heritable, changes in gene 
expression program in the absence of alteration in DNA sequence 
[18]. As mentioned above, one of the cytophysiological process 
mediated preconditioning stimuli is autophagy. This process has been 
shown to be inhibited due to methylation silencing of ULK2 gene 
in astrocyte [14]. In addition, whole genome screening showed an 
association between DNA methylation at the promoter or gene body 
level and microvascular density and to a lesser extent with blood flow 
recovery and revascularization of ischemic limbs [19]. Based on the 
literature, the cross- generation effects of ischemic preconditioning 
and its related mechanisms remain entirely elusive. Therefore, further 
studies are required to investigate the cross- generation adaptation to 
lethal- ischemia. Genomic- wide DNA methylation and global gene 
expression analysis will be useful to explore cross- generational effects 
of ischemic preconditioning and its related signalling pathways.
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