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Abstract

Cataract is a serious eye disease accounts for the major cause of blindness 
globally. It is characterized by the loss of transparency and opacification 
of eye lens; an opaque lens scatters the light as it passes through it and 
prevents the sharpness of the image in the retina and vision becomes blurred. 
Cataractogenesis is associated with numerous factors acting over many years. 
The major reason lies behind the formation of cataract is the damage induced 
by free radicals, reactive oxygen/ nitrogen species to the crystalline lens. In this 
review, we have discussed the different events and mechanisms associated 
oxidative damage in the lens that gives rise to cataractogenesis, the present 
treatment procedures and management of cataract. 
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Introduction
The visual system is the various components of eyes functioning 

in the process of vision by reacting to light, gain information about 
their environments and help to recognize the outer world by the 
process of visual perception and the resulting  perception  is called 
vision or sight. Vision is one of the most complex functions and it 
requires the cooperation of many intricate parts and the eye is made 
up of three coats. The outer layer ortunica externa or tunica fibrosas 
composed of the  cornea  and  sclera. The middle layer or tunica 
media or tunica vasculosa or uvea consists of the  choroid,  ciliary 
body and iris. The inner layer or tunica interna or tunica nervosa or 
retinais the light-sensitive tissue layer equipped with photoreceptors.
Within these coats are the aqueous humour, the vitreous body and 
the flexible lens. The aqueous humour is a clear fluid that is contained 
in two areas: the anterior chamber between the cornea and the iris 
and the posterior chamber between the iris and the lens. The lens is 
suspended to the ciliary body by the suspensory ligament (Zonule of 
Zinn) made up of fine transparent fibers. The vitreous body is a clear 
jelly that is much larger than the aqueous humour present behind the 
lens, and the rest is bordered by the sclera, zonule and lens. Vision 
begins when light rays are reflected off an object and enter the eyes 
through the cornea, the transparent outer covering of the eye. The 
cornea bends or refracts the rays  that pass through a round hole 
called the pupil. The iris, or colored portion of the eye that surrounds 
the pupil, opens and closes to regulate the amount of light passing 
through. The light rays then pass through the lens, which actually 
changes shape so it can further bend the rays and focus them on the 
retina at the back of the eye. The retina is a thin layer of tissue at 
the back of the eye that contains millions of tiny light-sensing nerve 
cells called rods and cones, for bright light and dim light respectively. 
These cells in the retina convert the light into electrical impulses. 
The optic nerve sends these impulses to the visual cortex in the brain 
where a composite image is produced [1].

The lens plays a crucial role in focusing unimpeded light on the 
retina. Eye lens is a biconvex, transparent, elastic, avascular structure 
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that is located just behind the iris and the pupil that receives all its 
nutrients from aqueous and vitreous humor. The lens is suspended in 
place by the zonularfibres, which attach to the lens near its equatorial 
line and connect the lens to a ring of muscular tissue, called the ciliary 
body. Changing focus to an object at a greater distance requires the 
relaxation of the ciliary muscle, which in turn increases the tension on 
the zonules, flattening the lens and thus increasing the focal distance 
The lens is capable of changing its shape, functions to change the focal 
distance of the eye so that it can focus on objects at various distances, 
thus allowing a sharp real image of the object of interest to be formed 
on the retina by the process, accommodation [2]. The lens is flexible 
and its curvature is controlled by ciliary muscles through the zonules. 

Structurally, the lens has three main components; capsule, 
epithelium and fibers. The capsule is the transparent, elastic, acellular 
basement membrane that completely encloses the whole cell mass 
and is the thickest basement membrane of the body. It is made up 
of type IV collagen and glycosaminoglycans and its main function is 
in the process oaccommodation bymolding the shape of the lens in 
response to tension from zonules [3]. The lens epithelium represents 
a single sheet of cuboidal cells just beneath the capsule at the anterior 
surface of the lens and the intercellular communication between the 
adjacent epithelial cells is through gap junctions. These monolayered 
cells regulate most of the homeostatic functions such as nutrient and 
ion transport, energy metabolism etc. in the lens and maintain the 
transparency of the lens. The fibers are long, thin, transparent cells 
form the bulk of the lens that the epithelial cells elongate, divide and 
differentiate to form the regularly arranged lens fibres. The new lens 
fibres are laid on the older deeper fibres and are formed throughout 
the life. Lens fibers arranged in zones, the cytoplasm of the cells of 
superficial bow region and the newly formed lens fibres contain 
nucleus, mitochondria, golgi complex, rough endoplasmic reticulum 
and polysomes and later on, all the light scattering organelles undergo 
an in built suicide process that minimizes light scatter and favors 
transparency [4].

Lens is an unusual organelle in its composition that with 
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extraordinarily high protein content and low water content and this 
enables the lens to have a refractive index considerably greater than 
its fluid environment. Transparency of the lens is made possible 
by various factors such as normal physiology of epithelial cells, 
regular arrangement of the lens fibers, architecture of structural and 
functional proteins etc. Any alteration in the normal architecture 
of eye lens is associated with the change in the clarity of the lens or 
pacification and eventually forms the cataract. It is a significant visual 
impairment globally and as per the latest statistical records of World 
Health Organization (WHO), the total number of persons with 
visual impairment worldwide in 2010 was 285 million and cataract 
is responsible for 51% of world blindness, which represents about 
20 million people [5]. Cataracts may be  congenital, age related or 
secondary.  Congenital cataracts, which are present at the birth and are, 
the less common cataract. The main types of age-related cataracts are 
nuclear sclerosis, cortical and posterior subcapsular. Nuclear cataracts 
form in the center of the lens and cause the nucleus to become hard 
or sclerotic with the deposition of brown pigment. Cortical cataracts 
are due to the opacity lens cortex and posterior subcapsular cataracts 
attack the back of the lens adjacent to the capsule. Secondary cataracts 
are caused by diseases like glaucoma and diabetes or medications such 
as steroids and radiations [6]. Cataract is associated with the gradual 
reduction of visual quality and is accompanied by a series of pathways 
that associated with imbalance in oxidant-antioxidant status [7], 
membrane lipid peroxidation [8], defected cellular communication 
[9], ion imbalance [10], modification, aggregation and accumulation 
of proteins [11,12], lenticular cell death [13,14] inflammation [15,16] 
etc. Hence, based on a variety of model systems; including cell/ organ 
culture, animal and human studies, the review focused on exploring 
the various pathways relating to the pathology of cataract, current 
treatment modalities and therapeutic preventive measures.

Mechanism of Cataract Formation
Oxidant-antioxidant imbalance

As lens is an organelle that exposed to light throughout the life 
time and prone to oxidative attack induced by reactive oxygen/
nitrogen species (ROS/RNS) [17,18], it is equipped with an efficient 
antioxidant system for defending these oxidative/nitrosative stress.
The major enzymatic antioxidants in the lens are superoxide 
dismutase [19], Catalase [20], glutathione peroxidase [21], glutathione 
reductase, glutathione-S-transferase [22], thioredoxin system etc. 
[23]and non-enzymatic antioxidants are reduced glutathione [24], 
ascorbic acid, Vitamin A, E etc. [25-28]. These antioxidants protect 
lens from damage induced by toxic radicals/species and oxidative 
stress is a metabolic state in which excessive levels of highly reactive 
and unstable compounds overwhelm the ability of antioxidants 
that quenches them. Decline in the activity of all these enzymes and 
molecules are reported in the formation of cataract  [29,30]. 

Stress signaling
NFκB is a ubiquitous transcription factor activated by ROS. 

Normally it is located in the cytoplasm in an inactive complex with 
inhibitor kappa B (Iκ B) and oxidative stress induce the release of I 
к B resulting in translocation of NFκB to the nucleus and it binds 
to DNA control elements and thus influences the transcription of 
specific genes associated with stress signaling and cell death. NFκB-
mediated pathway is reported to present in lens epithelial cells 

exposed to hydrogen peroxide [31] and UV stress [32] indicating its 
role incataractogenesis.

MAPK pathway
Mitogen-activated protein kinases (MAPKs) are serine-threonine 

protein kinases that play the major role in the regulation of cell 
proliferation, cell differentiation and cell death. MAPKs family is 
characterized by the conserved activation domain and specialized 
activation module and it comprised of extracellular signal-regulated 
kinases (ERK-1 and ERK-2 isoforms), the c-Jun N-terminal kinases 
(JNK-1, JNK-2, and JNK-3 isoforms) and the p38 MAPKs (p38α, 
p38β, p38γ and p38δ isoforms). Each subgroup of MAPKs is 
activated through a cascade of sequential phosphorylation events, 
beginning with the activation of MAPK kinase kinases (MAP3Ks). 
The MAP3Ks in turn phosphorylate and activate downstream MAPK 
kinases (MAP2Ks), which in turn stimulate MAPK activity through 
dual phosphorylation on threonine and tyrosine residues within 
a conserved tri-peptide motif. Activated MAPKs phosphorylate 
diverse substrates in the cytosol and nucleus to bring about changes 
in protein function and gene expression that execute the appropriate 
biological such as proliferation, differentiation, inflammatory 
responses, apoptosis etc. (Figure 1). MAPK phosphatases (MKPs), 
which recognize the TXY amino acid motif present in MAPKs, 
dephosphorylate and deactivate MAPKs [33]. MAPK pathways play 
discrete roles in the survival and normal functioning of lenticular 
epithelial cells and thus the transparency of the lens [34]. Oxidative 
stress is a predominant extracellular stimulus that activates MAPK 
pathways and many reports confirms the involvement of MAPK 
pathway in lens epithelial cell death and cataract formation through 
the disorganization of gap junctions and cytoskeletal assembly in the 
lens [35-37].

Protein kinase pathway
Protein kinase C (PKC) is a family of serine/threonine kinases 

that functions in the process of cellular signaling by phosphorylation 

Figure 1: Schematic representation of MAPK Pathway.
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and like MAPKs, PKCs are activated by oxidant damage and 
calcium. The PKCs have been grouped into three classes (PKC α,β 
and γ)  depending on the cofactors required for their activation. 
PKCγ moves to the plasma membrane following activation and 
phosphorylates targets such as receptors, structural proteins and gap 
junction proteins and reported in lens opacity [38-40].

Protein modification and removal of modified proteins
Proper arrangement of lens proteins plays the major role in the 

maintenance of transparency and modification of structural and 
functional proteins in the lens as a result of oxidation, proteolysis, 
transamidation, carbamylation, phosphorylation etc. is reported in 
the lens opacity [41].

Xanthine oxidase is a pro-oxidant enzyme normally present in 
ocular tissues and the raised activity of xanthine oxidase forms an 
important source of free radicals and is a lens oxidative stress marker 
[42]. Oxidants generated by xanthine oxidase system imposes cross-
linking and aggregation of crystallins, loss of cellular redox balance, 
oxidation of DNA bases and lipid peroxidation of polyunsaturated 
fatty acids and inflict the damage to the lens membrane active 
transport pumps and implicated in cataractogenesis [43]. Proteins 
may contain several actual or potential sulfhydryl groups and are 
the potential sites for reversible oxidation-reduction reactions and 
thioltransferases in the lens prevent the oxidation of proteins and 
maintain redox homeostasis in the lens. Modification of proteins 
precedes a cascade of events starting with protein disulfide cross-links, 
alteration of protein conformation, protein/enzyme deactivation, 
protein solubility loss and eventually lens opacification [11,44]. 

Carbonylation of proteins is a metal accelerated modification of 
proteins occurring in the side chain of amino acids such as lysine, 
arginine, proline or histidine and is a widespread indicator of 
severe oxidative damage an irreversible oxidative damage leading 
to the loss of protein function. carbonylated proteins tend to form 
high molecular-weight aggregates that are resistant to degradation, 
accumulate as damaged or unfolded proteins and carbonyls are 
reported in the lenses of cataractous lenses [45].

Crystallins are the predominant structural proteins in the lens 
constitute about 90% of water soluble proteins of the lens and add to 
the transparency and refractive properties by its proper packaging. The 
three main crystallin types found in the lens are α, β, and γ crystallins. 
Crystallins tend to form soluble, high molecular weight aggregates 
that pack tightly in lens fibres, thus increasing the index of refraction 
of the lens while maintaining its transparency. α crystallinsare 
the major crystallins comprised of α A and α B crystallinshave 
chaperone function [46,47] involved in remodeling and protection 
of the cytoskeleton, inhibition of apoptosis and resistance towards 
oxidative stress [48] (Andley 2007). Also, the molecular association 
of β and γ crystallins form dense packaging and this minimizing light 
scattering and provides an optimum in the transparency of lens [49]. 
Several studies have described extensive truncation of human lens 
α, β, and γ Crystallins duringcataract development through several 
modifications such as aggregation and cross-linking which leads 
toprotein insolubilization [50,51].

Intermediate filaments are the major cytoskeletal elements 
responsible for the transparency of the lens and the main intermediate 
filaments are filensin, phakinin and phakinin. Filensin and phakinin 

forms complex with αA and αB crystallins and they together termed 
as beaded filaments and vimentinforms a network in the lens that 
functions in the lens architecture and also interacts with flensing [52]. 
Degradation of filensin and phakinin and vimentindeamidation was 
reported in the age-related cataract lenses [53,54].

Gap junctions are transmembrane aqueous channels that 
connect the cytoplasm of neighboring cells and allow the passage 
of molecules up to the size of 1 kDa between the connected cells 
and they respond to a variety of factors, such as Ca2+ levels, voltage, 
pH and phosphorylation events [55,56]. Different arrangements of 
gap junctions exist between the different regions of epithelial cells, 
between the fiber cells, and between the epithelial and fiber cells [57]. 
Connexins are a family of four-pass transmembrane proteins that 
assemble in groups of six to form hemichannels or connexons and two 
hemichannels then combine to form a gap junction. The combination 
of different connexins differs in the physiological properties, 
including unitary conductance, permeability, gating, and regulation 
by different protein kinase-dependent pathways. Connexins play the 
major role in the lens transparency and cataract that they maintain 
the intracellular symphony in the lens. With defective hemichannels 
and gap junction, metabolite supply and catabolite removal reduced 
the metabolic center of the lens; epithelial cells become malfunctioned 
resulting in vision impairment. Connexins 43, 46 and 50 are the 
major connexins in the lens although their distribution varies among 
lens epithelia and fibers. Although connexins are phosphoproteins, 
many abnormal phosphorylation patterns of connexins are reported 
in opaque lenses. All the connexin gap junctions and hemichannel 
functions are affected by oxidative stress and implicated in the 
formation of cataract [58]. Connexins are prone to phosphorylation 
by PKCs and nitrosylation by nitric oxide [59]. PKC-dependent 
phosphorylation of Ser368 in Cx43 affects its channel behavior, 
which leads to the decreased intercellular communication and altered 
permeability [60,61]. 

Transglutaminase 2 is an inducible transamidatingacyltransferase 
that catalyzes Ca2+ dependent protein modifications by inducing of 
covalent cross-links between peptide bound glutamine and lysine 
residues and is up-regulated often in cells undergoing oxidative 
stress and apoptosis [62,63]. Deamidation and further denaturation 
of crystallinsare implicated in the pathology of cataract [64,65]. 
Deamidation causes unfolding of α Crystallin molecules; partially 
unfolded protein may possess increased exposure to key hydrophobic 
residues, which are involved in the chaperone activity [66].

Matrix metalloproteinases (MMPs) represent a family of 
endopeptidases that are capable of degrading the extracellular matrix 
molecules and thereby of maintaining normal physiological processes 
such as morphogenesis and influencing cell biological activities [67] 
and the most widely studied MMPs in the ocular tissues are MMP 2 
and MMP 9. Lens cells are capable of synthesizing MMPs upon injury 
to the lens, such as UV irradiation [68], oxidative stress [69] and 
MMPs digests type IV collagen and laminin, cleaves and aggregates 
βB1 crystallinand produce lens opacity [15,70].

Oxidant damage to lens proteins and its accumulation is implicated 
in the formation of cataract. For maintaining the transparency of 
lens, the damaged proteins should be removed and the process is 
done by the ubiquitin-proteasome mechanism. Degradation of a 
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protein via the ubiquitin-proteasome pathway involves tagging of the 
substrate protein by the covalent attachment of multiple ubiquitin 
molecules and the subsequent degradation of the tagged protein by 
the 26S proteasome. Multiple enzymes are involved in the process of 
ubiquitinylation through a series of ATP-dependent enzymatic steps. 
In this process, ubiquitin is first activated by ubiquitin activating 
enzyme (E1), activated ubiquitin is then passed to a ubiquitin carrier 
protein (E2) both via the formation of a thiol ester bond. The activated 
ubiquitin is then either directly linked to substrates or is linked to 
substrates via ubiquitin ligase (E3), targeted to 26S proteasome for 
proteolysis and ubiquitin is recycled [71]. Ubiquitin-dependent 
proteasome pathway is under the control of oxidant response and 
the activity of both activating and conjugating enzymes were altered 
in the aged lens [72,73] and amino acid residues of ubiquitin which 
is involved in the protein degradation mechanism is modified by 
oxidants [74]. All these events compromise the function of ubiquitin-
proteasome pathway in the cataractous lens.

Lipid peroxidation
The integrity of lenticular membrane is one of the important 

factors that keep lens transparency. Lens membrane serves as an 
impermeable barrier to cations and is equipped with membrane 
ATPases for the homeostasis of water, calcium, sodium and 
potassium. Lipid oxidation is a major harmful consequence of ROS 
formation as it produces irreversible oxidative changes of membranes. 
It has been shown to induce disorganization of the membrane, 
modification of membrane proteins, alters the physiological functions 
of cell membranes. Lipid peroxidation has been implicated in the 
pathogenesis of cataract because the lethal peroxidation products 
induce fragmentation of soluble lens proteins and damage critical 
membrane structures, epithelial cell apoptosis and correlating with 
an increase in lens opacity and changes in the refractive properties of 
the lens [8,75-77].

Ion imbalance
As discussed earlier, lens membrane is equipped with various 

pumps for maintaining the optimal ion homeostasis. To maintain 
such steep ionic gradients, the lens must continually expend energy 
to drive sodium and calcium outward, at the same time functioning 
to accumulate other ions such as potassium. Cellular calcium 
homeostasis is achieved by a balance between the inward leak and 
out flow by plasma membrane Ca2+ ATPase and Na+ Ca2+ exchanger. 
Progressive elevation of sodium, marked loss of potassium and 
several fold increment of calcium are documented in the literature 
in the pathology of lens opacification [78,79]. A prolonged increase 
in the calcium concentration would be expected to activate proteases 
such as calpain and could induce the formation of protein aggregates 
and irreversible breakdown of important structural proteins andlead 
to lens opacification [80-82]. The decrease of calcium ATPase activity 
is also reported with cataract due to lipid structural changes [83,84], 
increase in the oxidation of sulf-hydrul groups [85] and down-
regulated ATP utilization [86]. 

The redox state of the cell is largely reliant on the trace elements 
iron and copper by virtue of their capability to go through reversible 
redox reactions and is maintained within strict physiological limits. 
Accumulation of these metals may disrupt the intracellular redox 
status, alter protein conformation and inhibit protein function 

through metal substitution and interactions with sulfhydryl groups 
by catalyzing the formation of reactive hydroxyl radicals via Fenton 
reaction [87]. Iron and copper is implicated in the pathogenesis of 
cataracts by damaging lipid membranes and lens capsule, cross-
linking and insolubilization of lens proteins, leakage of beta and 
gamma crystallins into the aqueous humor through the production 
of hydroxyl radicals and peroxyl radicals [88-91]. 

Inflammation
Inflammation is a series complex biological response of body 

tissues to harmful stimuli; although Inflammation is a protective 
response, it is reported in various diseases. Nitric oxide (NO) is 
a free radical gas, signaling messenger and the role of the NO in 
inflammation are well established. Nitric oxide is normally present 
at a low concentration in the aqueous humor that bathes the lens 
[92]. Constitutive levels of NO production contribute normal ocular 
function, but in response to induction of inducible nitric oxide 
synthase (iNOS) by oxidant trauma, the production of NO is elevated. 
NO contribute to oxidation stress by developing more powerful 
oxidative agents suchas peroxynitrite with superoxide [93] (Horton, 
2003) which is highly reactive and inflicts cytotoxicity and nitrosative 
stress to proteins [94] and reported in cataractogenesisby type IV 
collagen and laminin and cleaves βB1 crystallin [18,95].

Interleukin (IL) -18 is a pleiotropic cytokine belonging to the 
IL-1 family induces interferon (IFN) γ, NFkB and iNOS and plays 
an important role in inflammatory action [96,97]. The increased 
generation of ROS accelerates the production of inflammatory 
cytokines like IFN γ in the lens through MAPK pathway. It has 
been reported that IFN-g leads to cataract development by causing 
the apoptosis of lens epithelial cells and associated with cataract 
development [14,98].

Lens epithelial cell apoptosis
As discussed earlier, metabolic homeostasis of a single layer 

of lens epithelial cells is the critical event in maintaining the 
transparency of the entire lens [99]. The cells have a relatively long 
life span under normal physiological conditions, the factors such as 
oxidative stress alter the viability of lenticular epithelia resulting in 
lens opacification. Enormous number researches confirmed the role 
of lens epithelial cell death as the key biochemical event underlying 
the process of cataractogenesis through a series of events mentioned 
above [14,100,101]. Oxidative damage, increased calcium level, 
membrane damage, inflammatory responses etc. activate lenticular 
apoptosis through the activation of pro-apoptotic factors, Caspases 
and inhibition of anti-apoptotic agents [102].

Treatment of cataract
In the modern century, surgical removal of cloudy/opaque lens 

and replacement with a synthetic intraocular lens is the only available 
treatment for cataract. Phacoemulsification, extracapsular cataract 
extraction and intracapsular cataract extraction are the major surgical 
procedures employed for cataract treatment throughout the world 
[103].

Phacoemulsification
It is the most common procedure used by developed countries. 

In this technique, a very small incision (2-3 mm) is produced on the 

https://en.wikipedia.org/wiki/Phacoemulsification
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surface of the eye in or near the cornea. A thin ultrasound probe is 
inserted into the eye and uses ultrasonic vibrations (40,000  Hz) to 
dissolve (phacoemulsify) the clouded lens. These tiny fragmented 
pieces are then suctioned out through the same ultrasound 
probe. Once the cataract is removed, an artificial lens is placed 
into the thin capsular bag that the cataract previously occupied. 
In phacoemulsification, cataract surgery can perform in less 
than 30 minutes and usually requires only minimal sedation and 
no stitches are used to close the wound [104]. 

Extracapsular cataract extraction 
This technique requires a larger incision so that the cataract can 

be removed in one piece without being fragmented inside the eye. 
It involves the removal of almost the entire natural lens through a 
large (usually 10-12  mm) incision made in the  cornea  or  sclera, 
while the elastic lens capsule (posterior capsule) is left intact to 
allow implantation of an intraocular lens. This surgical technique 
requires a various number of sutures to close the larger wound and 
visual recovery is often slower.Manual small incision cataract surgery 
is an evolution extracapsular cataract extraction  characterized by 
an appropriately constructed scleral tunnel that does not require 
suturing. Here the wound being relatively smaller than the above still 
markedly larger than a phaco wound [105].

Intracapsular cataract extraction 
It involves the removal of the lens and the surrounding lens 

capsule in one piece and the intraocular lens is placed in front of 
the iris. The procedure has a relatively high rate of complications due 
to the large incision required and pressure placed on the  vitreous 
body. 

Complications of cataract surgery
Although surgery is an effective measure for cataract blindness, 

it is not free from post-operative complications. The major risks 
associated with post-surgery are inflammation (swelling and redness) 
in the eye, swelling of the retina (cystoid macular oedema); where 
fluid builds up between layers of the retina at the back of the eye, 
swelling of the cornea- where fluid builds up in the cornea at the 
front of the eye; this usually clears itself, retinal detachment; a rare 
complication where the retina (layer of nerve cells inside the back of 
the eye) becomes separated from the inner wall of the eye, infection 
in the eye, such as endophthalmitis (a rare bacterial infection), 
glaucoma, secondary cataract etc. [106].

Preventive protection of cataract
Even though cataract surgical techniques are efficient treatment 

modalities, there are people around the globe with barriers for 
accessing all these facilities because of insufficient financial resources, 
lack of awareness etc. [107]. As cataract is a protein degenerative 
disorder, its irreversible nature directs vision researchers in the track 
of preventive protection for the management of cataract blindness. A 
noteworthy vision researches indicate the role of nutritional intrusion 
as a way to reduce the risk of cataract. As oxidative stress forms the key 
behind the pathological events associated with cataract, many studies 
have been focusing to explore the efficacy of antioxidants in the 
prevention of cataract. Studies recommend that optimizing intakes 
of lutein, zeaxanthin, B vitamins, and multivitamin supplements may 
be advantageous in diminishing risk of nuclear and possibly cortical 

cataract [108]. Also many indigenous plants and plant-derived 
compounds have been shown to protect lens transparency in both 
in vitro and in vivo models such as lupeol, luteolin by modulating 
antioxidant status and preventing apoptosis [83], rutin through 
blocking chaperon activity of α Crystallin [109,110], curcuminby 
inhibiting iNOS [111], resveratolby lowering lipid peroxidation [112] 
etc. The plants reported to have anticataractogenic potential are Cassia 
tora [63,77], Vitexnegundo [113], Moringaoleifera [114], Ginkgo 
biloba [115], Ocimum sanctum [116] etc. Thus the incorporation 
of these nutrients, plants and compounds is recommended for eye 
health and to prevent the onset and maturation of lenticular opacities 
through the way of prevention by functional foods.

Conclusion
Thus, the pathophysiological position of the oxidant-antioxidant 

balancing systems in the lens and cataract blindness is justified 
here. Through MAPK pathway, oxidative damage on lens induces 
membrane damage, metal accumulation, protein modification and 
accumulation, inflammation, lenticular apoptosis, etc. (Figure 2) 
and all these alter the refractive properties of the lens resulting in 
the opacity and cataract. Although modern surgical procedures are 
available for the cataract treatment, it has its own limitations and 
complications and natural product based nutritional therapy is a 
newly emerging cost effective area in the field of vision research for 
cataract management by the way of precautionary protection.
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