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Abstract

Breast cancer is a type of cancer that occurs when cells in the 
breast tissue grow uncontrollably. It may be caused by activation 
of growth receptors and/or mutations in oncogenes. Single Nucle-
otide Polymorphisms (SNPs) are variations in the DNA sequence 
that occur when a single nucleotide in the genome is altered. Non-
synonymous SNPs (nsSNPs) can alter the amino acid sequence of a 
protein, potentially affecting its structure, function, and interaction 
with other proteins. In the context of breast cancer research, in-sili-
co nsSNPs analysis can help identify specific genetic mutations that 
may be associated with increased breast cancer risk or treatment 
response. A newly discovered gene, AAMDC, is an oncogene, muta-
tion in which can lead to breast cancer. The purpose of this study 
is to find out the possible and vulnerable mutational sites in its se-
quence. Designed study primarily focused in-silico structural analy-
sis and functional analysis of nsSNPs associated with AAMDC gene. 
175 most damaging nsSNPs of AAMDC gene were analyzed using 
different bioinformatics tools. After sequence analysis and protein 
stability prediction using SIFT, Polyphen-2, CADD, and I-Mutant2.0, 
10 nsSNPs were shortlisted using consensus based approach. All 
nsSNPs were analyzed for disease association prediction using IMu-
tant2.0, PhD-SNP and PANTHER; 3 nsSNPs were shortlisted based 
on consensus approach. Then structural and functional variation of 
these damaging SNPs was analyzed using MUTPRED2 and SNAP2. 
The goal of current study is to check out the damaging effect of ns-
SNPs associated with structure and function of AAMDC gene. This 
study can help us in understanding breast cancer genetics and its 
prevention and treatment.
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Introduction

Cancer is characterized by uncontrolled and abnormal cell 
division leading to the proliferation of cells. The types of can-
cer are classified based on the origin of the organ or tissue and 
the molecular characteristics of the cancer cells [1]. After lung 
cancer, the most prevalent type of cancer worldwide is breast 
cancer [2]. Breast cancer can affect individuals of any age, both 
males and females, but it occurs more frequently in females 
over the age of 40. Each year, approximately 1 million cases are 
recorded globally, with 60% of these cases coming from low- 
and middle-income nations. In Pakistan, breast cancer is the 
leading cause of death in women due to cancer [3]. Several risk 
factors have been linked to breast cancer in women, including 
the presence of estrogen, postmenopause, late menopause, 
obesity, and high levels of endogenous estradiol [2,4-6]. Breast 
cancer is not uniformly caused at the molecular level; instead, 
it can be brought on by one or more factors. These molecular 
characteristics include activation of the HER2 (human epider-

mal growth factor receptor 2), activation of the oestrogen and 
progesterone receptors, and/or BRCA mutations [7]. 

The oncogene, Adipogenesis associated Mth938 domain 
containing (AAMDC), is believed to play a crucial role in the reg-
ulation of fat cell differentiation. According to NCBI, it is local-
ized at 11q14.1 and functions in the cytoplasm [8]. In addition, 
AAMDC is known to work in conjunction with RNA polymerase 
II, positively regulating transcription and negatively regulating 
the apoptotic process. In situations of metabolic stress, such as 
estrogen deprivation, AAMDC is known to constitutively acti-
vate the PI3K-AKT-mTOR pathway, leading to the survival of ER+ 
breast cancers [9]. The PI3K/AKT/mTOR pathway is an impor-
tant intracellular signaling mechanism that regulates the cell cy-
cle, impacting cellular dormancy, proliferation, and cancer [10]. 
The AAMDC protein provides a protective shield to cancer cells, 
hindering their ability to be treated with anti-cancer hormone 
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therapy. This protein has the ability to alter the metabolic pro-
cesses of breast cancer cells, triggering growth pathways and 
facilitating their growth and division [11].

SNP refers to a variation in a single nucleotide at a specific 
position in the DNA sequence. It plays a crucial role in under-
standing the relationship between genetics and diseases [12]. 
In the human genome, SNPs account for over 90% of sequence 
variations and are used to identify genetic variations and bio-
markers [13]. Owing to their widespread frequency, simplicity 
in analysis, affordability in genotyping, and the application of 
statistical and bioinformatics tools, single nucleotide polymor-
phisms (SNPs) are considered as the most useful biomarkers 
for the diagnosis of illnesses or prognosis [14]. The goal of SNP 
research in disease genetics is to identify single nucleotide poly-
morphisms (SNPs) that alter cellular biological processes and 
result in diseased states [15].

Materials and Methods

None of the SNPs study has specifically investigated the role 
of the AAMDC gene in the development of the Breast Cancer. 
This study aims to fill this gap by conducting a computational 
analysis of the AAMDC gene to identify any potential Single Nu-
cleotide Polymorphisms (SNPs). The analysis is divided into two 
domains: sequence analysis of the gene for SNPs and structural 
and functional analysis of the gene. Both domains involve in-
silico methods.

Data Retrieval and Pre-Processing

To gather information about the AAMDC gene, two well-
known genomic databases, NCBI and ENSEMBL, were consult-
ed. The data obtained from these sources included the gene's 
description, chromosomal location, transcripts, genomic seg-
ments, and resulting products. Additionally, non-synonymous 
single nucleotide polymorphisms (nsSNPs) obtained from these 
databases were analyzed to determine which nsSNPs were the 
most damaging. To achieve this, several bioinformatics tools 
were employed, including SIFT, PolyPhen-2, and CADD.

NCBI: NCBI houses numerous databases containing bio-
logical information, such as GenBank for DNA sequences and 
PubMed for biomedical literature [16].

ENSEMBL: Ensembl allows users to retrieve protein sequenc-
es, predict missense amino acids, perform multiple sequence 
alignments, annotate genes, and predict regulatory functions of 
proteins [17]. The SNPs of all the transcripts of AAMDC gene, in-
cluding the missense Single Nucleotide Polymorphisms (SNPs), 
were extracted, processed manually in excel and documented.

Sequence Analysis

Sequence analysis was performed to check the damaging ef-
fect of the SNPs in our gene of interest i.e. AAMDC, using fol-
lowing tools.

Prediction of damaging SNPs: SNPs which have a negative 
impact on protein stability, mRNA, protein structure and func-
tion, are considered as "Damaging SNPs" and have been associ-
ated with various diseases. To determine the effect of SNPs on 
protein sequences, a comprehensive analysis was performed 
on a filtered set of most damaging non-synonymous SNPs using 
various bioinformatics tools.

SIFT: The SIFT (http://sift.bii.a-star.edu.sg) tool is a computa-
tional tool that predicts the functional impact of substitutions 

by taking into account the sequence homology and physical 
properties of amino acids, including naturally occurring non-
synonymous polymorphisms and laboratory-induced missense 
mutations [18]. SIFT was used to analyze a set of most dam-
aging 175 filtered non-synonymous single nucleotide polymor-
phisms (nsSNPs) from Ensembl data, with the aim of identifying 
nsSNPs that have a damaging effect on protein sequences.

POLYPHEN-2: Polyphen-2, Polymorphism Phenotyping v2, 
is a computational tool that assesses the impact of amino acid 
changes on the structure and function of human proteins. It 
utilizes basic physical and evolutionary principles to predict 
the functional effects of non-synonymous single nucleotide 
polymorphisms (nsSNPs) on a given protein [19]. The filtered 
set of most damaging 175 nsSNPs were added as input into 
Polyphen-2 to evaluate their potential for damaging effects on 
protein sequence and identify nsSNPs that have a detrimental 
impact on protein function.

CADD (Combined Annotation Dependent Depletion): The 
Combined Annotation Dependent Depletion (CADD) system cal-
culates a unified score that takes into account multiple genomic 
annotations, by comparing the variations that have survived 
natural selection with those that are simulated mutations [20]. 
This system was used to analyze most damaging 175 shortlisted 
non-synonymous single nucleotide polymorphisms (nsSNPs) by 
incorporating them as input into the CADD system, to deter-
mine the potential deleterious effect of amino acid changes on 
the protein sequence.

Protein-Stability Prediction

Protein stability is the overall balance of forces that deter-
mines whether a protein will be in its natural, folded structure 
or a denatured (unfolded or stretched) condition. The predic-
tion of protein stability was carried out by using following da-
tabase.

I-Mutant 2: I-Mutant2.0 program utilizes Support Vector 
Machine (SVM) algorithms to predict the effect of single point 
mutations on protein stability. as quantified by DeltaDeltaG val-
ues, and classifies the direction of the stability change resulting 
from the mutation [21]. To evaluate the impact of amino acid 
changes on protein structure, most damaging 175 nsSNPs  with 
both new and wild type sequences were added as input into the 
I-Mutant2.0 program

Disease Association Prediction

The process of Disease Association Prediction aims to assess 
the detrimental effects of nsSNPs on the specified gene using 
bioinformatics tools.

PhD SNP: PhD SNP (https://snps.biofold.org/phd-snp/phd-
snp.html) operates using the FASTA format for protein sequenc-
es and was designed to assess the damaging effects of amino 
acid changes in protein structure and their correlation with vari-
ous diseases associated with the AAMDC gene [22]. To accom-
plish this, most damaging 175 nsSNPs, consisting of both new 
and wild type variations, were incorporated as input into the 
PhD SNP for analysis.

PANTHER: Panther (Protein Analysis Through Evolutionary 
Relationships) tool is designed to evaluate the potential impact 
of nsSNPs on protein function. The score for a given nsSNP is 
determined through a Hidden Markov Model (HMM) alignment 
of evolutionary related proteins [23].
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Structural and Functional Prediction

The structural and functional changes in the protein due to 
nsSNP were assessed using the bioinformatics tool given below

MUTPRED2: MutPred2 is a tool that categorizes nsSNPs as 
either harmful or benign, and predicts their effect on over 50 
different protein characteristics [24]. MutPred2 was used to 
evaluate the structural and functional effects of most damaging 
175 nsSNPs. 

SNAP2: SNAP2 is a bioinformatics tool that utilizes neural 
networks to predict the impact of single amino acid variations 
on a protein's function [25].

Results and Discussion

Data Retrieval and Pre-Processing

The National Center for Biotechnology Information (NCBI) 
is a highly regarded repository for biotechnology and biomedi-
cine-related resources and databases. The gene known as AAM-
DC has been assigned alternate designations, including CK067, 
PTD015, and C11orf67. This gene is located on the 11q14.1 
chromosomal region and consists of 12 exonic regions [26]. 

The Ensembl genome browser was used to retrieve the tran-
scripts and corresponding sequences of the AAMDC gene. The 
gene has 11 transcript variants and 207 orthologues, as depict-
ed in Table 1. The SNPs of all transcripts were documented pro-
cessed manually in excel and nsSNPs were shortlisted in excel.

Sequence Analysis

Prediction of damaging SNPs: Prediction of damaging SNPs 
was done by using various state-of-the art algorithms (SIFT, 
POLYPHEN-2, and CADD). SIFT version 2.0 predicts an amino 
acid substitution score from zero to one. Out of most damaging 
175 nsSNPs, 160 nsSNPs were labeled as ‘deleterious’ whereas 
15 were labeled as ‘Tolerated’. Out of most damaging 175, 160 
were predicted as ‘Probably Damaging’, 13 as ‘Possibly Damag-
ing’ whereas only one SNP was predicted as ‘Benign’ by POLY-
PHEN-2. CADD predicted 38 nsSNPs as ‘Deleterious’ whereas 
137 were predicted as ‘Benign’. All the most damaging 175 ns-
SNPs were then shortlisted on consensus base to check for the 
nsSNPs which damaging in all the tools. 10 nsSNPs were pre-
dicted to be damaging SNPs as highlighted in table 2.

Protein-Stability Prediction

I-Mutant2.0 predicts protein stability changes upon single 
nucleotide polymorphism. All the shortlisted most damaging 
175 nsSNPs with mutant and wild type were added to the I-
Mutant2.0 as an input to check damaging effect of amino acid 
changes in protein structure. Out of most damaging 175, 136 
nsSNPs predicted the ‘Decrease’ in protein stability whereas 
39 nsSNPs predicted ‘Increase’ in protein stability. Ten cen-
sus based shortlisted nsSNPs were also added in I-Mutant2.0. 
I-Mutant2.0 predicted that there was a large decrease in sta-
bility of protein for 10 SNPs variant persisted as shown in the 
table 3, which highlighted that mutations affected the stability 
of structure of protein. Reliability Index value of I-Mutant2.0 is 
also given in the table 3. Based on the result of I-Mutant2.0, a 
consensus based predicted list of protein stability is highlighted 
in the table 3.

Disease Association Prediction

All the shortlisted most damaging 175 nsSNPs with mutant 
and wild type were added to the PhD SNP as an input to check 
damaging effect of amino acid changes in protein structure 
and their association with different diseases associated with 
AAMDC gene. Out of most damaging 175, 94 were predicted as 
‘Disease’ whereas 86 were ‘Neutral’ and reliability index ranged 

Table 1: Ensembl genome browser showing Transcripts of AAMDC 
Gene.

Transcript ID Name
Amino 
Acids

Biotype

ENST00000393427.7 AAMDC-202 122aa Protein Coding

ENST00000527134.5 AAMDC-207 137aa Protein Coding

ENST00000532481.5 AAMDC-210 88aa Protein Coding

ENST00000304716.12 AAMDC-201 147aa Protein Coding

ENST00000533193.5 AAMDC-211 168aa Protein Coding

ENST00000526415.5 AAMDC-206 122aa Protein Coding

ENST00000525034.1 AAMDC-203 122aa Protein Coding

ENST00000525409.5 AAMDC-204 90aa Protein Coding

ENST00000526164.5 AAMDC-205 93aa Nonsense Mediated Decay

ENST00000529666.1 AAMDC-208 51aa Nonsense Mediated Decay

ENST00000531855.1 AAMDC-209
No  
protein

Protein Coding CDS not 
defined

Figure 1: Graphical representation of the Methodology.

Table 2: Consensus based predicted list of damaging SNPs.
Muta-
tions

Transcripts SIFT Polyphen-2 CADD

I6T

ENST00000393427.7
ENST00000527134.5
ENST00000532481.5
ENST00000304716.12
ENST00000533193.5
ENST00000526415.5
ENST00000525034.1
ENST00000525409.5
ENST00000526164.5
ENST00000529666.1
ENST00000531855.1

Deleterious
Probably  
Damaging

Likely  
Deleterious

W11G Deleterious
Probably  
Damaging

Likely  
Deleterious

D25N Deleterious
Probably  
Damaging

Likely  
Deleterious

P30S Deleterious
Probably  
Damaging

Likely  
Deleterious

G31A Deleterious
Probably  
Damaging

Likely  
Deleterious

V49A Deleterious
Probably  
Damaging

Likely  
Deleterious

V66M Deleterious
Probably  
Damaging

Likely  
Deleterious

A68T Deleterious
Probably  
Damaging

Likely  
Deleterious

L75S
ENST00000532481.5
&
ENST00000533193.5

Deleterious
Probably  
Damaging

Likely  
Deleterious

A146T ENST00000533193.5 Deleterious
Probably  
Damaging

Likely  
Deleterious
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from 0-10. The results of PANTHER indicated that 156 nsSNPs 
were predicted as "probably damaging," while 19 were deemed 
"benign". Based on the results of PhD-SNP and PANTHER, a con-
sensus based predicted list of Disease-Associated SNPs over-
lapped with previous consensus is given in the table 4.

Structural and Functional Prediction

All the most damaging 175 nsSNPs were subjected to Mut-
Pred2 to analyze probability of deleterious mutation score. The 
results showed that some nsSNPs variants highlighted Molecu-
lar mechanisms such as gain of instrinsic disorder, altered or-
dered interface, Loss of Relative solvent accessibility, Altered 
Stability, Loss of N-linked glycosylation, Altered Metal binding, 
Loss of Loop, Gain of Disulfide linkage and altered trans mem-
brane protein  whereas other highlighted the affected prosite as 
well as different ELM Motifs e.g. ELME000052 & ELME000335. 
The result included predicted molecular mechanism, property 
score (Pr) of molecular mechanism and its P-value, Predicted 
conservation scores, affected prosite and ELM Motifs. All the 
most damaging 175 variants were also added as an input in 
SNAP2 tool. Out of damaging 175 nsSNPs, 120 nsSNPs showed 
‘Effect’ on structural phenotype of proteins and 55 were ‘Neu-
tral’. Based on the results of MUTPRED2 and SNAP2, a consen-
sus based predicted list of structural analysis of nsSNPs is given 
in the table 5.

Consensus Based Deleterious nsSNPs

Three nsSNPs common in transcripts ENST00000393427.7, 
ENST00000527134.5, ENST00000532481.5, 
ENST00000304716.12, ENST00000533193.5, 
ENST00000526415.5, ENST00000525034.1, 
ENST00000525409.5, ENST00000526164.5, 
ENST00000529666.1 and ENST00000531855.1 were identified 
as most deleterious nsSNPs after analysis of most damaging 
175 nsSNPs in AAMDC gene, as shown in figure 2 and table 6. 
According to consensus based table 6, the deleterious nsSNPs 
variants of the AAMDC gene were highly predicted as damaging 
based on consensus approach using the results retrieved from 
sequence analysis, prediction of disease association, structural 
analysis and functional analysis.

Structural Analysis

Structural analysis was performed to determine the structur-
al changes between the wild and mutant deleterious SNPs that 
were predicted by the bioinformatics tools through sequence 
analysis of AAMDC gene. Structural Analysis was conducted in 
two stages.

HOPE: The HOPE (Hyperactive Optimized Protein Engineer-
ing) methodology was utilized to evaluate the impact of muta-
genesis on the wild and mutant forms of a gene. The analysis 
revealed disparities in various aspects, such as the amino acid 
composition, structural features, domains, physical characteris-
tics, hydrophobicity, and spatial arrangement, between the na-
tive and altered amino acid residues. HOPE was applied to three 
consensus-based, deleterious nsSNPs in the AAMDC gene, spe-
cifically W11G, P30S, and G31A, to compare the wild and mu-
tated protein sequences.

W11G variant: The W11G variant of the AAMDC gene has 
been predicted to result in a structural change through a muta-
tion as identified by the HOPE algorithm. This mutation involves 
a substitution of Tryptophan with Glycine at position 11 in the 
protein's structure. The mutant residue, as depicted in figures 
3, 4 and 5, has a smaller size and lower hydrophobicity com-
pared to the wild-type residue. The protein ribbon structure is 
illustrated in figure 4, with a close-up view of the mutation pre-
sented in figure 5. The side chains of the protein, mutant and 
wild residue are respectively depicted in gray, red, and green.

P30S variant: The HOPE analysis predicted that a structural 
alteration from Proline to Serine at position 30 in the protein 
structure would occur, as depicted in Figure 6. The amino ac-
ids are depicted in black and red, representing the side chains 
and functional groups, respectively. According to HOPE, the 
wild residue Proline is highly rigid, and thus, its mutation could 

Table 3: Consensus based predicted list of Protein Stability due to 
nsSNPs.

Mutations Transcripts I-Mutant2.0 Reliability Index
I6T ENST00000393427.7

ENST00000527134.5
ENST00000532481.5
ENST00000304716.12
ENST00000533193.5
ENST00000526415.5
ENST00000525034.1
ENST00000525409.5
ENST00000526164.5
ENST00000529666.1
ENST00000531855.1

Decrease 8
W11G Decrease 10
D25N Decrease 8
P30S Decrease 8
G31A Decrease 8
V49A Decrease 9
V66M Decrease 9

A68T Decrease 9

L75S
ENST00000532481.5
&
ENST00000533193.5

Decrease 9

A146T ENST00000533193.5 Decrease 9

Table 4: Consensus based predicted list of Disease-Associated SNPs.
Mutations Transcripts PhD SNP PANTHER

W11G ENST00000393427.7
ENST00000527134.5
ENST00000532481.5

ENST00000304716.12
ENST00000533193.5
ENST00000526415.5
ENST00000525034.1
ENST00000525409.5
ENST00000526164.5
ENST00000529666.1
ENST00000531855.1

Disease Probably Damaging
P30S Disease Probably Damaging

G31A Disease Probably Damaging

Table 5: Consensus based predicted list of Structural Analysis by 
bioinformatics tools.

Mutations Transcripts MUTPRED2 SNAP2

W11G ENST00000393427.7
ENST00000527134.5
ENST00000532481.5
ENST00000304716.12
ENST00000533193.5
ENST00000526415.5
ENST00000525034.1
ENST00000525409.5
ENST00000526164.5
ENST00000529666.1
ENST00000531855.1

0.888 Effect
85%

P30S 0.768 Effect
63%

G31A 0.666 Effect
66%

Table 6: Consensus based result of all tools for deleterious nsSNPs in 
AAMDC Gene.

Bioinformatics 
Tools

W11G P30S G31A

SIFT Damaging Damaging Damaging

Polyphen-2
Probably Dam-
aging

Probably Damag-
ing

Probably Damaging

CADD Deleterious Deleterious Deleterious

I-Mutant2.0 Decrease Decrease Decrease

PhD-SNP Disease Disease Disease

PANTHER
Probably Dam-
aging

Probably Damag-
ing

Probably Damaging

SNAP2 Effects Effects Effects

Mutpred-2 0.888 0.768 0.666
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Figure 2: Consensus based graphical view nsSNPs using bioinfor-
matics tools to determine sequence analysis, protein stability, 
disease association, structural and functional prediction.

Figure 3: The structural change in protein due to mutation from W 
to G at 11 in AAMDC protein as predicted by HOPE.

Figure 4: AAMDC protein in ribbon structure. α-helix, β-strand, 
turn, other molecules in the complex are colored blue, red, green 
and grey respectively, as predicted by HOPE.

Figure 5: Close up view of wild and mutant residue in AAMDC 
protein as predicted by HOPE.

disrupt the unique conformational structure of the protein. 
Additionally, the analysis indicated that this residue is located 
within the core of the Mth938 domain and, therefore, the mu-
tation could also alter or compromise the core structure of the 
Mth938 domain. The protein ribbon structure is illustrated in 
figure 7. A close-up view of the mutation is shown in figure 8, 
with the protein, mutant, and wild residue side chains depicted 
in gray, red, and green, respectively.

G31A variant: HOPE predicted a structural change from 
Guanine to Alanine occurs at position 31 in protein structure as 
shown in figure 9. Backbone in the figure is colored red whereas 
side chain is colored black. HOPE predicted that mutant amino 
acid is bigger in size than wild amino acid. The mutant amino 
acid is more hydrophobic than wild. The wild type residue Gly-
cine is the most flexible of all the amino acids, the mutation 
in which will result in loss of this function.  The protein ribbon 
structure is shown in figure10.  The close up mutation is shown 
in figure 11, along with protein, mutant and wild residue side 
chain in grey, red and green respectively.

Figure 6: The structural change in protein due to mutation from P 
to S at 30 in AAMDC protein as predicted by HOPE.

Figure 7: AAMDC protein in ribbon structure. α-helix, β-strand, 
turn, other molecules in the complex are colored blue, red, green 
and grey respectively, as predicted by HOPE.

Figure 8: Close up view of wild and mutant residue in AAMDC 
protein as predicted by HOPE.

STRING: 

The molecular docking predictions performed using STRING 
software have revealed the potential interactions between 
the AAMDC protein and ten other proteins, including KCTD14 
(a BTB/POZ domain-containing protein involved in potassium 
channel tetramerization), GATSL3 (a cytosolic arginine sensor 
for the mTORC1 signaling pathway), AAED1 (a thioredoxin-like 
antioxidant enzyme), INTS4 (a component of the Integrator 
complex involved in small nuclear RNA transcription and pro-
cessing), AADACL3 (an arylacetamide deacetylase-like protein), 
RNPEP (an arginyl aminopeptidase), AASDH (an aminoadipate-
semialdehyde dehydrogenase), NARS2 (a probable mitochon-
drial asparagine-tRNA ligase), AAR2 (a cistron-splicing factor in-
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Figure 9: The structural change in protein due to mutation from G 
to A at 31 in AAMDC protein as predicted by HOPE.

Figure 10: AAMDC protein in ribbon structure. α-helix, β-strand, 
turn, other molecules in the complex are colored blue, red, green 
and grey respectively, as predicted by HOPE.

Figure 11: Close up view of wild and mutant residue in AAMDC 
protein as predicted by HOPE.

Figure 12: Protein-Protein interaction network of AAMDC gene 
using STRING server.

volved in pre-mRNA splicing), and AADACL4 (an arylacetamide 
deacetylase-like protein) as shown in figure 12. These interac-
tions are crucial for understanding the biological processes in-
volving these proteins.

Conclusion

In this study, the impact of deleterious single nucleotide 
polymorphisms (nsSNPs) on the coding regions of the AAMDC 
gene was evaluated using bioinformatics tools. This is the first 
research to predict the impact of non-synonymous SNPs (ns-
SNPs) on the structure and function of the AAMDC protein. Out 

of most damaging 175 missense SNPs, three SNPs (W11G, P30S, 
and G31A) were predicted to be the most deleterious. These 
nsSNPs were found to have a negative impact on the protein's 
structure and function. The W11G and G31A nsSNPs have a 
high probability of affecting transmembrane protein function, 
while the P30S nsSNP not only affects transmembrane protein 
but also impairs metal binding and activation of the active site. 
Structural analysis using the HOPE and STRING methods con-
firmed the impact of these deleterious nsSNPs. Individuals with 
these nsSNPs in their genome are more susceptible to muta-
tions in AAMDC gene and therefore, an increased risk of breast 
cancer. This in-silico study can potentially aid in the develop-
ment of effective drugs against Breast Cancer.
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