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Abstract

The aim of this study was to assess fundamental antibacterial properties of 
Copper Nanoparticles (CuNPs) as intracanal medication against Enterococcus 
faecalis (E. faecalis) in vitro, by determining the Minimum Inhibitory 
Concentration (MIC) and Minimum Bactericidal Concentration (MBC). Single-
rooted human teeth were incubated with E. faecalis and medicated with CuNPs 
and calcium hydroxide for 1 and 7 days. A non-medicated group was used as 
a control. For Colony-Formit Units count, samples from medicated root canals 
were collected and cultured for 24 hours to detect viable bacteria. Morphology 
and chemical composition of the biofilms was analyzed by scanning electron 
microscopy and energy-dispersive X-ray spectroscopy respectively. MIC and 
MBC values of CuNPs were 150 µg/mL and 225 µg/mL, respectively. CuNPs 
exhibited an antibacterial effect equivalent to that of calcium hydroxide with no 
significant differences (p>.05), exhibiting promissory antibacterial properties as 
intracanal medication to eliminate E. faecalis from infected root canal.

Keywords: Intracanal medication; Enterococcus faecalis; Copper 
nanoparticles

Introduction
Periapical disease originates from bacterial infection that 

invades the root canal system, inducing an immunoinflammatory 
host response that destroys apical tissues [1,2]. Endodontic therapy 
seeks to control the intracanal infection and prevent reinfection to 
achieve periapical reparation. Cleaning and shaping reduce bacterial 
contamination; however, it is not enough to completely remove it 
[3]. In addition, more resistant bacteria to endodontic procedures, 
like E. faecalis, are generally present and decrease success rate of 
the treatment. This Gram-positive facultative anaerobic bacterium 
has been identified in primary infections or localized in one third 
of the teeth with persistent periapical disease [4]. Thus, eradication 
of E. faecalis from root canal system is fundamental to improve the 
prognosis of the endodontically treated teeth.

Intracanal medication is a complementary procedure that involves 
an antimicrobial agent left inside the root canal between sessions in 
order to reduce the resistant bacteria to previous therapeutic actions 
[5]. Calcium hydroxide is the most used intracanal medication; which 
is a strong alkali that releases calcium and hydroxyl ions, causing 
protein denaturation and DNA damage [6]. Although, calcium 
hydroxide has good antimicrobial activity against endodontic 
pathogens, is less effective against E. faecalis and Candida albicans 
[7]. This is attributed to the buffer capacity of dentin, which decreases 
the pH of medium below the antibacterial value (pH=10.3) [8]. In 
addition, this material can be difficult to remove from the root canal 
system through profuse irrigation and instrumentation, remaining 
more than 45% into the canal surface [9]. Calcium hydroxide residues 
may interfere with the sealing of the endodontic sealer yielding to 
micro leakage and possibly interfering with treatment outcome [10].

Exploring alternative antibacterial agents with better performance 
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against resistant bacteria and capable to act effectively within the 
canals is a new challenge. Due to advances in nanotechnology, 
metallic nanoparticles, such as silver, zinc or copper appear as a new 
generation of antimicrobials for biomedical applications [11,12]. 
Nanoparticles have dimensions smaller than 100 nm and high 
surface/volume ratio, which allow them to have greater interaction 
with bacterial membranes [13]. Furthermore, antimicrobial ability 
of metallic nanoparticles is generally attributed to positively charged 
ions, which are attracted to the negatively charged bacterial cell 
membranes, causing changes in their structures, in DNA replication 
and essential proteins, resulting in the death of the organism [14]. 
Silver and zinc appear among the most studied nanoparticles [14,15]. 
In endodontic context, a gel based on silver nanoparticles has been 
studied against E. faecalis producing a disruption of the bacterial 
biofilm [16]. Silver nanoparticles have been incorporated into 
calcium hydroxide paste, improving the capacity of the commercial 
product to kill and remove the E. faecalis biofilm from human dentin 
[17]. On the other, CuNPs exhibit a wide spectrum of antimicrobial 
activity against different species of microorganisms, including 
fungi and Gram-positive and Gram-negative bacteria [18]. Copper 
is also cheaper than silver, mixes easily with polymers and present 
relatively stable chemical and physical properties [19]. However, 
the studies about the activity of CuNPs against dental pathogens are 
scant. Antibacterial effect of CuNPs has been demonstrated against 
Escherichia coli and Staphylococcus aureus resistant to methicillin [12], 
and oral pathogens such as Aggregatibacter actinomycetemcomitans 
[20] and Candida albicans [21]. However, until now the antibacterial 
properties of CuNPs against resistant endodontic bacteria have been 
not reported. 

The aim of this study was to assess fundamental antibacterial 
properties of CuNPs as intracanal medication against E. faecalis in 
vitro.



J Dent & Oral Disord 4(6): id1107 (2018)  - Page - 02

Covarrubias C Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

Materials and Methods
The study protocol was approved by the Ethics and Research 

Committee of Faculty of Dentistry, University of Chile. Verbal and 
written consent was obtained from all of the study participants prior 
to extraction of teeth.

Synthesis and characterization of CuNPs
CuNP suspensions were prepared by mixing 96.84 mL of 10% 

ascorbic acid, 0.242 g starch (particle stabilizer) and 3.14 mL of a 0.2 M 
copper acetate solution. Then, the mixture was heated in microwave 
for 1 minute in two series of 30 seconds to obtain a 1000 µg/mL CuNPs 
suspension. After that, the suspension was frozen and lyophilized to 
obtain CuNPs powder. CuNPs were examined by Scanning Electron 
Microscopy (SEM) (JSM-IT300LV, JEOL, Tokyo, Japan). Specimens 
were prepared by transferring a small drop of synthesized suspension 
to carbon tape placed on the SEM specimen holder.

Determination of minimum inhibitory and minimum 
bactericidal concentration

Macrodilution method was used to determine the MIC. Standard 
test tubes with 1 mL of Brain-Heart Infusion (BHI) and 1 mL of CuNPs 
in different concentrations were prepared from a stock solution of 
1000 µg/mL; then 100 µL of E. faecalis inoculum with a turbidity 
equivalent to a 0.5 McFarland (1.5 × 108 Colony Formit Units (UFC)) 
was added. A tube containing only broth inoculated was used as a 
positive control and a tube containing CuNPs with BHI with no 
inoculum was used as a negative control. The inoculated tubes were 
incubated at 37ºC for 48 hours. After this period, last test tube in the 
dilution sequence where there is no microbial growth was identified 
visually, determining MIC. Then, test tubes with no bacterial growth 
were culture in BHI Agar and incubated at 37°C for 48 hours. After 
this period, CFUs were counted under stereomicroscope and visually 
to determine MBC.

In vitro intracanal medication model
Sixty extracted teeth with orthodontic and/or periodontal 

indication were collected from Surgery Clinic of Dental School, 
University of Chile, with signed informed consent. Inclusion 
terms were single-rooted teeth without apical disease or resorptive 
pathology and closed apical foramen. Extracted teeth were maintained 
in alcohol 70% with glycerin until their manipulation to avoid 
dehydration. Ørstavik & Haapasalo´s modified protocol will be used 
to infected root canal [22]. Crowns and apices were removed with 
high velocity diamond burs to produce mid-root sections specimens 

10 mm long. Periodontal tissue was removed with curettes. Volume 
of root canal was standardized with Gates Glidden #3 burs. Smear 
layer was removed in ultrasonic bath with sodium hypochlorite 5.25% 
during 10 minutes, rinsed with sterile saline and finally with EDTA 
17% during 30 seconds. Root canals were dried with paper points 
and sterilized. 24 hours colonies development of E. faecalis (ATCC 
29212) grown in BHI Agar were suspended in 3mL of BHI, adjusted 
spectrophotometrically (HALO RB – 10 UV – VIS RATIO BEAM) 
to obtain 1.5 × 108 UFC/mL of turbidity, equivalent to Mc Farland 
0.5. Tubes with specimens were contaminated with 2 mL of bacterial 
suspension, closed and kept at 37°C during 21 days, replacing 1 mL of 
saturated suspension for 1 mL of freshly suspension, every 48 hours. 
Samples were cultivated to confirm the viability and purity of the 
cultures. The root specimens were rinsed with sterile saline, dried and 
fixed in plates with wax. Then, samples were randomly divided into 
2 experimental groups (n=25) and one control group (n=10). Under 
aseptic conditions, canals were medicated with calcium hydroxide 
(Ultracal XS®, Ultradent Products Inc.) and CuNPs/distilled water 
suspensions of 150 and 300 µg/mL. Control group was not medicated. 
The medicaments were carried into the root canal using Monoject 
TM syringes until to observe its complete filling. Specimens were 
incubated during 1 and 7 days in triplicate at 37°C. After each time, 
specimens were washed with saline solution and immersed in 1% 
tween-80 surfactant solution during 10 minutes to obtain viable 
bacteria from samples. Direct and diluted aliquots (1/10, 1/100, 
1/1000) were cultured in BHI agar; plates were kept at 37°C during 24 
hours. Aliquots were cultured in BHI agar; plates were kept at 37°C 
during 24 hours. Colony-Formit Units (CFU) were counted from 
BHI agar.

Figure 1: (a) SEM image and (b) resonance surface plasmon of CuNPs 
confirming nanometric size of obtained particles used in this study.

Figure 2: (a) CFU values (mean ± SE of unmedicated control specimen and 
of those medicated for 1 and 7 days with Ca(OH)2 and CuNPs. (*) samples 
differ significantly of control (p< 0.01). (b) Photographs of CFU grown (dilution 
1/100) from control and medicated specimens.
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Scanning electron microscopy analysis
Random areas from some samples of each group were observed 

to detect the presence of biofilm of E. faecalis and possible action of 
medicaments tested. For this purpose, infected canals were medicated 
with Ultracal XS® and CuNPs suspension of 150 µg/mL for 7 days. 
Specimens without medication were used as control. Adherent 
bacteria were fixed in 2.5% glutaraldehyde, then progressively 
dehydrated in ethanol, dried in supercritical CO2, and finally coated 
with gold for observation by SEM coupled equipped with Energy-
Dispersive X-Ray spectroscopy (EDX) for analysis of chemical 
composition. 

Statistical analysis of the mean values of CFUs counting of each 
group was performed by one-way analysis of variance [23] followed 
by multiple comparison Bonferroni’s test with the software Graph 
Pad Prism 5®. Statistical significance was set at p<.05. 

Results
Characterization of copper nanoparticles

SEM observation indicates that estimated particle size of the 
CuNPs obtained is about 80 nm (Figure 1a). CuNP suspension exhibits 
an absorption maximum at 593 nm (Figure 2b) corresponding to its 
characteristic surface plasmon resonance that confirm the nanometric 
nature of the particles.

Determination of MIC and MBC
MIC of CuNPs suspension against E. feacalis that inhibited the 

visible growth of the microorganism after incubation period was 150 
µg/mL. MBC value that prevented the growth of the bacterium after 
to be subcultured in agar plates was 225 µg/mL.

In vitro intracanal medication model
Ultracal XS®, CuNP-150 and CuNP-300 notably reduced the 

number of CFUs after 1 and 7 days of intracanal medication (Figure 
2a), compared with the control unmedicated group (p<.05). There 
were qualitatively differences between the CFUs formed from control 
and those grown from the medicated root canal surfaces (Figure 2b).

SEM images reveals that the biofilm grown on the dentin surface 
is notably decreased after the different medication treatments (Figure 
3b-e), particularly when the CuNP-300 suspension was utilized. In 
addition, the presence of cocci-like spherical imprints can be observed 
on the biofilm surfaces treated with CuNPs. 

The chemical composition of the surface medicated with CuNP-
150 was simultaneously analyzed by EDX. Copper nanoparticles 
relatively homogeneously distributed were detected on the dentin 
surface after the medication treatment (Figure 3f). EDX quantitative 
elemental analysis confirmed that C, O, Ca, P, and Cu are the major 
element components of CuNP-medicated dentin surface (Figure 3g). 
EDX mapping on an individual bacterium revealed a high copper 
concentration localized on the microorganism (Figure 3h).

Discussion
The main etiology of pulp and periapical disease is bacterial 

infection, which is set in the root canal system forming a biofilm, 
including areas of difficult instrumental domain. Biofilm 
characteristics allow microorganisms being more resistant to 
endodontic therapy, which added to the presence of resistant bacteria, 

such as E. faecalis, lead to explore new intracanal medication agents. 

Antibacterial activity of CuNPs against E. faecalis was 
preliminarily assessed by determining the MIC (150 µg/mL) and 
MBC (225 µg/mL) values. MBC of pure CuNPs against E. faecalis 
had not been previously reported. This value is consistent with the 
MBC value reported for CuNPs supported on clay (255 µg/mL) [24]. 
MBC of CuNPs against Gram-positive bacteria (e.g. Bacillus subtilis) 
has been generally reported to be lower than that observed for Gram-
negative bacteria (e.g. E. coli) [25]. It is believed that copper has great 
affinity towards amines and carboxylic groups of cell wall, which 
lead to a stronger damage of cell bacterium structure [26]. Copper 
particles with nanometric dimensions may also penetrate into the 
cell or to be oxidized to Cu+, which form reactive oxygen species that 
induce DNA damage.

The results of the current study demonstrate that the CuNPs 
exhibit an equivalent antibacterial effect than that presented by 
the commercial product Ultracal XS® during an in vitro intracanal 
medication model. Antibacterial mechanism of calcium hydroxide 
is based on an increasing of the alkalinity of the medium, which is 
affected by buffer capacity of the dentin, thus reducing its bactericidal 
properties [8]. In contrast, CuNPs have an antibacterial mechanism 
independent of pH, penetrating into the bacteria, altering the osmotic 
balance and inducing DNA damage and cell killing [27]. The multiple 

Figure 3: (a) Cross-sectional SEM image of the root intracanal system 
showing the zone chosen for higher magnification analysis of the medicated 
biofilm. (b) Representative image of E. faecalis biofilm grown on dentin 
surface, and after medication by using (c) Ca(OH)2 , (d) CuNP-150 (white 
arrows showing cocci-like spherical imprints on the biofilm surface), and (e) 
CuNP-300. EDX elemental microanalysis of E. faecalis biofilm medicated 
with CuNP-150: (f) EDX mapping showing copper distribution on the biofilm/
dentin surface, (g) EDX spectrum with quantitative elemental analysis, (h) 
Copper distribution on the area occupied by an individual bacterium.
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antibacterial mechanisms of CuNPs could be favorable for keeping a 
long-term antibacterial effect after intracanal medication, which is not 
generally achieved by using the traditional irrigants and medications, 
which undergo well-known inactivation processes [8]. Silver 
nanoparticles mixed with calcium hydroxide have bee also reported 
to have antibacterial activity against E. faecalis [17], providing 
additional evidences about the potential of metallic nanoparticles as 
new antimicrobial agents against endodontic pathogens. 

In the medication model, CFU counting demonstrated that 
CuNPs reduced the number of viable bacteria by effectively killing 
them. In addition, SEM observations revealed the presence of cocci-
like spherical imprints on the biofilm surface, which suggests that 
adherent bacteria are apparently removed from the biofilm. This 
effect could be attributed to the well-known antifouling property 
of copper related with its capacity to detach the microorganisms 
from a surface [28]. This biocide capacity includes eradicating the 
microorganisms that are in proximity to the surface or degrade the 
foulants and metabolites that have already settled on it. In addition, 
EDX analysis showed that copper remains adhered on the dentinal 
surface even after the medication has been removed. This aspect 
would be beneficial for endodontic therapy because could prevent 
the future bacteria recolonization, and thus reducing the possibilities 
of endodontic failures. Due to that, the in vitro endodontic model 
does not consider the presence of isthmuses and apical deltas, in vivo 
studies could provide further information about the antibacterial 
behavior of CuNPs during endodontic medication.

Conclusion
CuNPs, exhibit a strong bactericidal effect on E. faecalis, adhere 

on the dentine surface and could detach the bacteria from biofilm, 
which could have favorable consequences in preventing root canal 
reinfections. In this study has been demonstrated, for the first time, 
the antibacterial properties of nanosized copper against E. Faecalis 
and its efficacy as medication in an in vitro model. Future studies 
are required to optimize the cytocompatibility aspects or finding 
appropriate vehicles in order to achieve a controlled release of the 
nanoparticles maintaining therapeutic concentrations. 
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