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Abstract

This review focuses on the role of the purine nucleoside adenosine in animal 
models of depression. There is evidence provided that adenosine A2A receptors 
are involved in several animal models of depression: learned helplessness, 
behavioral despair, reserpine-induced depression, and effort-related choice. In 
these models, adenosine A2A antagonists reverse behavioral deficits and exhibit 
a profile similar to that of classical antidepressants, suggesting that adenosine 
A2Aantagonists could be useful in the treatment of depression.

to the action of methylxanthine stimulants [24,25], foreshadowed a 
significant role of this signaling mechanism in behavior, particularly 
in fatigue-like processes. Caffeine and theophylline, the active 
ingredients in coffee and tea, respectively, are widely used to elevate 
mood, combat fatigue, and avoid sleepiness. These compounds derive 
their stimulant properties by acting as nonselective antagonists at 
brain adenosine receptors. 

Adenosine signaling is closely linked to cellular energy homeostasis 
[26-31]. The process is engaged whenever the rate of ATP (adenosine 
triphosphate) utilization exceeds the rate of synthesis. In neurons, 
this type of imbalance in the energy supply/demand ratio can result 
from excessive neural activation or from a shortage in brain glucose 
or oxygen. The nucleoside is produced in nanomolar concentrations 
as cellular work increases via S-adenosyl-L-homocysteine (SAH) 
metabolism and is extruded into extracellular space via bidirectional 
transporters [32,33]. Adenosine also can be rapidly hydrolyzed 
from extracellular nucleotides by a family of ectonucleotidases [34]. 
Extracellular adenosine acts as a modulator of several functions in the 
brain, including neuronal viability, neuronal membrane potential, 
propagation of action potentials, astrocytes function, microglia 
reactivity, primary metabolism in both neurons and astrocytes, and 
regulation of blood flow [35,36]. Adenosine exerts its homeostatic 
and regulatory actions by interacting with four G-protein-coupled 
stereo specific receptors: A1, A2A, A2B, and A3 [37,38]. A1receptors are 
widely distributed in the brain and mediate adenosine’s inhibitory 
actions by coupling with Gi proteins, which inhibit adenylyl cyclase. 
A2 receptors mediate adenosine’s excitatory actions by coupling to Gs 
proteins, which stimulate adenylyl cyclase [39,40]. The A2B subtype is 
a low-affinity receptor that is widely distributed in most brain regions. 
The high-affinity A2A subtype has a much more limited distribution, 
being localized primarily on enkephalin-containing GABA ergic 
neurons in the striatopallidal tract of the striatum [41,42]. Limited 
concentrations of A2A receptors also are found in the thalamus [42-
44], nucleus tractus solitaries [45,46] and cholinergic neurons of the 
pontine reticular formation [47]. A3 receptors are found primarily in 
the periphery, with high concentrations in the testes and mast cells, 
and are not heavily expressed in the brain. These receptors play an 
important role in regulating inflammatory reactions [48,49].

Adenosine modulates dopaminergic functions in the dorsal and 
ventral striatum where the nigrostriatal, mesostriatal, and mesolimbic 

Current Theories of Depression
Major depressive disorder is one of the most common and 

debilitating psychiatric illnesses in the United States; each year 6.7% 
of adults experience a depressive episode [1]. The neurobiology of 
depression has been well studied and debated, with early evidence 
suggesting a “monoamine theory of depression”. A cornerstone of 
the monoamine theory of depression is the observation that many 
patients being treated with reserpine, an alkaloid extract from the root 
of the climbing shrub Rauwolfia Serpentina that inhibits vesicular 
monoamine transporters and depletes monoamine levels, developed 
symptoms of major depression [2]. Similarly, it was later found 
that monoamine oxidizes inhibitors and tricyclic antidepressants, 
which are used to treat depression, enhance brain monoamine 
neurotransmission. These observations led to the development of the 
catecholamine [3,4] and monoamine [5] theories of depression. Other 
evidence in support of the monoamine theory of depression comes 
from the findings that depletion of monoamine stores mitigates the 
efficacy of antidepressants [6,7], and drugs which deplete monoamine 
stores can induce depression [8,9].The early monoamine theory 
of depression has been revised and expanded upon (see Harro and 
Oreland 2001 [10] for a review), and various versions have been 
formed. Other theories of depression include neuro genesis (See 
Ogłodek et al 2014 [11] for a review) and inflammation (see Dantzer 
2006 [12] for a review). These theories will not be discussed in detail, 
as they are beyond the scope of this review.

There is considerable evidence supporting the previously 
mentioned theories of depression; however, there are likely other 
mechanisms contributing to the symptoms of depression, and 
novel pharmacological targets should be investigated. Thus, in the 
present review, we focus on the contributions of a brain-signaling 
pathway involving purine nucleoside adenosine to animal models 
of depression. Adenosine signaling at A2A receptors is implicated in 
several animal models of depression, including learned helplessness 
[13,14], behavioral despair [15,16], cytokine-induced depression 
[17,18], and effort-related choice [19-23]. We will review these 
animal models and the behavioral effects of adenosine signaling in 
these procedures. 

Adenosine
The discovery of the adenosine receptor, and its eventual link 
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neuronal pathways terminate. Strong evidence now implies the 
existence of adenosine A2A/D2 heterogenic complexes coupled in an 
antagonistic relationship. Hillion et al [50] showed that when cells 
stably transfected with D2 receptors were transiently cotransfected 
with a taggedA2A receptor, they formed receptor complexes in the 
absence of exogenous agonists for either receptor. Not only does 
binding of the A2A receptor in the heterogenic complex result in 
conformational changes in the D2 receptor, but it also decreases D2 
activated coupling to its Gi-protein [51]. Activation of the D2 receptor 
in the heterogenic complex results in Gi-mediated inhibition of the 
activation of adenylyl cyclase by the A2A linked Golf-protein [52]. In 
this conception, A2A receptors modulate glutamatergic afferents to 
the region via an antagonistic coupling to dopamine D2 receptors 
[53,54]. The functional consequences of this arrangement are that 
activation of D2 receptors augments ongoing action [55,56]. By 
contrast, activation of A2Areceptors produces behavioral depression 
[19].

Given that both reserpine [2] and tetrabenazine [8,57,58], 
induce depressive symptoms in humans, that A2A antagonists 
reverse the behavioral effects of these drugs in animals [16,20], and 
that both drugs deplete extracellular dopamine [20,59], we propose 
that the aforementioned antagonistic interactions between D2 and 
A2A receptors modulate the potential antidepressant effects of A2A 
antagonists. Figure 1 summarizes the opposing effects on signal 
transduction of A2A and D2 receptors.

To date, there are no published clinical trials investigating the 
antidepressant efficacy of A2A antagonists or any studies investigating 
adenosine synthesis, metabolism, or receptor distribution in post-
mortem tissue from depressed patients. Based on the animal data 
presented here, we believe this is an area of research that should be 
expanded upon Figure 1.

Learned Helplessness and Adenosine 
Signaling

The learned helplessness paradigm is an animal model of 
depression. The experiment is a simple two-phase procedure. Sets of 
three rats are restrained in wheel-turn chambers in the pretreatment 
phase. The first rat in each triad is exposed to a series of controllable 
shock escape trials. The rat must complete a 360° turn of the wheel with 
its paws following shock onset in order to terminate the aversive event 
on each trial. A second rat receives yoked inescapable (uncontrollable) 
shock on each trial. Shock comes on at the same time for both rats 
on a trial and terminates when the first rat completes the escape 
response. Wheel-turn responses by the yoked rats are ineffective in 
altering shock. Thus, both rats receive the same intensity pattern and 
duration of shock on each trial, but differ in the extent to which they 
can exert behavioral control over the stressor. These rats receive 100 
such trials over a period of 2 h. A third rat is simply restrained in 
the chamber for the same period of time and receives no shock. The 
restrained rat provides a behavioral and physiological baseline from 
which any differential effects of stressor controllability can be assessed 
during later testing. Although the nature of the test varies with the 
interests of the experimenter, the traditional measure of helplessness 
has been a performance in a shuttle-escape task conducted 24 h after 
stress pretreatment [60]. The shuttle-escape task consists of five fixed 
ratio-1 (FR-1) trials during which a single shuttle crossing is required 

to terminate shock. This is followed by 25 trials (or FR-2 trials) during 
which a rat must run from one side of the shuttle box to the other, and 
then return, to terminate shock. Both trial types are presented with 
an average inter trial interval of 60s; however, 3 minutes intervene 
between trial types, which maximizes escape deficits in inescapably 
shocked rats without adversely affecting control subjects [61]. Trials 
terminate automatically if the appropriate response requirement is 
not met within 40 seconds of shock onset. Groups typically do not 
differ in mean escape latencies during FR-1 trials. However, large 
performance differences occur when the response requirement 
is made more difficult (FR-2 trials). Rats preexposed to escapable 
shock in the pretreatment phase perform as efficiently as restrained 
controls during escape testing. By contrast, rats preexposed to yoked 
inescapable shock show severe impairment, with near-maximum 
escape latencies during the FR-2 trials. This general pattern among 
groups holds for a wide variety of behavioral and biological stress 
indices. Moreover, because escapable and inescapably shocked rats 
receive the same pattern, intensity, and durations of shock during 
pretreatment, the differential performance of these two groups in the 
test phase provides unequivocal evidence that some psychological 
variable related to behavioral control, or lack thereof, modulates the 
impact of the shock stressor [62]. It is important to note that not 
all rats display helpless behavior after exposure to shock. Research 
investigating the nature of individual differences in helplessness 

Figure 1: Adenosine signaling in the A2A/D2/m GLU receptor complex in 
the striatum. Activation of the A2A receptor results in increased GABA ergic 
signaling from the striatopallidal cells which project to the external globus 
pallid us. The tonic inhibitory projections are attenuated by the increase in the 
GABA ergic signal arriving from the striatum. This disinherits the sub thalamic 
nucleus, which sends an increased excitatory projection to the substantia 
nigra pars reticulate, where heightened inhibitory signal disrupt normal 
motor output from the ventro medial thalamus, resulting in hypo motility. (1) 
5’Nucleotidases convert 5’AMP to ADO, which is extruded into extracellular 
space via Ca++ dependent release. High- and low-affinity nucleoside uptake 
transporters are responsible for extracellular ADO concentration. (2) Blocking 
the ENT1 transporter with NBT1 (an ADO transport inhibitor) is one suggested 
mechanism for extracellular increase in ADO. Once inside the cell, (3) ADO 
is converted to 5’AMP via adenosine kinase, thereby increasing expendable 
energy (represented in the number of high-energy phosphate bonds). (4)
The ADO degradation pathway, located on glia, converts ADO to the inactive 
insane and eventually to uric acid. The A2A linked Golf protein results in 
an accumulation of c AMP. The c AMP accumulation leads to activation 
of PKA, which facilitates the phosphorylation of certain dopaminergic and 
glutamatergic-modulating genes (e.g. DARPP-32), along with CREB, 
which results in further transcriptional events, most notably c-fos and other 
immediate early genes.
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suggests that susceptibility is associated with abnormalities in HPA 
axis activation [63], reduced reward sensitivity [64], increased novelty 
seeking [64], and synaptic potentiation in the medial prefrontal cortex 
[65]. Resilience has been linked to synaptic weakening in the medial 
prefrontal cortex [65] and altered sensitivity to the behavioral effects 
of GABA-A receptor antagonists [66]. The helpless phenotype has 
been validated in other tests. Helpless rats show motor disturbances 
akin to the psychomotor retardation seen in depressed patients [67-
69], alterations in REM sleep [70], decreased saccharin consumption 
[71], and congenitally helpless rats show impaired work output for 
sucrose solution [72].

A simpler version of this procedure is often used when testing 
the efficacy of experimental compounds at alleviating stress-induced 
pathology. Because rats exposed to escapable shock do not show 
behavioral or physiological impairment, this condition adds an 
unnecessary expense to basic pharmaceutical research. Thus, much 
of the research discussed here compares rats exposed to variable-
duration inescapable shocks during the pretreatment phase with 
the restrained control. Research over the past decade has yielded a 
consensus on a number of critical issues concerning the psychological 
and neurobiological determinants of helplessness. Behavioral 
disturbances following inescapable shock are a consequence of the 
induction and prolonged maintenance of fear during exposure to the 
uncontrollable stressor [73-75]. Controllable stress is less debilitating 
because it is less fear provoking (see and Hunter 2002 [76] for 
a review). The consequence of maintaining an intense catabolic 
reaction during inescapable shock is that a number of neural systems 
associated with fear and stress are rendered hyper responsive and 
highly vulnerable to subsequent stress for 24–72 h. Inescapably 
shocked rats enter the test phase of the helplessness experiment in 
an anxious, agitated state. Exposure to comparatively mild stress 
during the first few shuttle escape trials provokes exaggerated 
behavioral activation to the shock and excessive fear during the 
interval between trials [77,78]. This behavioral reaction is correlated 
with sustained Glucocorticoid secretion [79], rapid turnover of 
brain biogenic amines [80], depletion of forebrain nor epinephrine 
[81-83], dopamine [84,85] and γ-amino butyric acid (GABA) [86], 
and excessive release of excitatory amino acid transmitters [87] and 
N-methyl-D-aspartate (NMDA) receptor activation [88]. The initial 
response is short-lived and the animal rapidly transitions from a 
highly catabolic state to one of behavioral quiescence, dissociation, 
or conservation-withdrawal. This general pattern of excessive neural 
activation is reminiscent of the conditions that compromise brain 
metabolic homeostasis and result in potent compensatory inhibition 
by adenosine. Although little was known about the behavioral 
effects of adenosine at the time we started this research, there was 
evidence that adenosine analogs suppress spontaneous motor activity 
and can produce a semi-hypnotic state [89-91]. These properties of 
receptor agonists suggest adenosine signaling may be a plausible 
mechanism for the behavioral depression and cognitive dysfunction 
associated with conservation-withdrawal and helplessness. Thus, we 
hypothesized that the excessive and unregulated neural activation that 
characterizes inescapably shocked rats during the first few minutes 
of escape testing rapidly compromises neural energy homeostasis, 
resulting in potent compensatory adenosine regulation. 

The least intuitive prediction of this hypothesis, at least from a 

psychological perspective, is that treatment with methylxanthine 
stimulants just prior to testing in inescapably shocked rats should 
dramatically improve escape performance. The conceptual difficulty 
here is that methylxanthine have rather potent angiogenic effects, 
particularly at high doses. Thus the prediction is that a condition that 
stems from too much fear [74,92] will be improved by a treatment 
that induces anxiety. Despite this conundrum, the straightforward 
prediction is well substantiated. Figure 2 (left panel) shows the 
effects of pretest treatment with various drugs on shuttle-escape 
performance in rats previously exposed to inescapable shock. Each 
point represents the mean FR-2 escape latencies for groups of eight 
rats. The nonselective adenosine receptor antagonist’s caffeine and 
theophylline reversed the effects of inescapable shock on later escape 
performance in a dose-dependent manner, relative to the vehicle 
control. Amphetamine, a nonxanthine psychomotor stimulant, 
had no beneficial effect at any dose under study. The ability of the 
methylxanthine to reverse the helplessness effect was not due to drug 
state dependency and these drugs had no effect on the performance of 
non-shocked restrained controls Figure 2.

Adenosine analogs have the opposite effect on escape performance. 
Figure 2 (right panel) shows the FR-2 shuttle escape latencies of 
groups of rats receiving a pretest injection of various adenosine 
analogs. One group of rats was exposed to Inescapable Shock (IS) 
and one group was restrained (REST) during the pretreatment phase 
of the experiment. Twenty-four hours later, these groups received 
vehicle (V) 15 min before escape testing and defined the boundaries 
of the helplessness effect. Other restrained groups were injected 
with various doses of either: (a) 5’-N-Ethylcarboxamidoadenosine 
(NECA), a high affinity, but nonselective adenosine receptor agonist; 
(b) R (−) Phenylethyladenosine (R (−)PIA), a high-affinity, highly 
selective agonist of the A1 receptor; or (c) S(+)-Phenylethyladenosine 
(S(+)PIA), the relatively inactive enantiomer of R-PIA. Later escape 

Figure 2: (Left Panel) Grand mean FR-2 shuttle-escape latencies as a function 
of drug type and dose. All rats were exposed to un signaled inescapable 
shock on day 1. Shuttle-escape testing occurred 24 h later. Groups of rats 
received an i.p. injection of vehicle or various doses of amphetamine, caffeine 
or theophylline 15 min before testing. Each point in the figure is the mean 
for a group of eight rats. *p<.05, different from vehicle. (Right Panel) Grand 
mean FR-2 shuttle-escape latencies as a function of drug type and dose. 
One group of rats was exposed to Inescapable Shock (IS) and one group 
was restrained (REST) in tubes 24 h prior to shuttle escape testing. These 
groups were treated with vehicle 15 min before testing and their performance 
sets the boundaries for the learned helplessness effect. All other groups were 
restrained in tubes 24 h before receiving an i.p. injection of the nonselective 
adenosine agonist NECA, the highly selective A1 receptor agonist R(−)PIA, 
or its enantiomer S(+)PIA. Escape testing occurred 15 min later. *p<.05, 
different from restraint-vehicle group. Figures taken from Minor et al 1994 
[13,14].
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testing of these groups clearly indicated that the effects of inescapable 
shock are mimicked by activation of adenosine receptors. The 
comparison of NECA and R (−) PIA provided the first evidence 
that this effect may be mediated at the A2receptor. Moreover, the 
deleterious effects of pretreatment with inescapable shock or pretest 
treatment with NECA on escape performance is not reversed by 
peripheral treatment with the polarized methylxanthine stimulant 
8-(p-Sulfopenyl)-theophylline (8-SPT), which does not cross the 
blood–brain barrier [93], but is completely reversed by theophylline, 
which acts both centrally and peripherally [13,14]. These data suggest 
that the effects of adenosine signaling on shuttle escape latencies are 
occurring within the Central Nervous System (CNS).

NECA and inescapable shock also interact synergistically. 
Exposure to an ineffective number of inescapable shocks during 
pretreatment combines with the administration of sub threshold 
doses of NECA just prior to testing to produce performance deficits 
in the shuttle-escape task. The contribution of adenosine to the 
helplessness effect appears to be related to neural over activation and 
subsequent metabolic failure. Over activation of glutamate neurons in 
prefrontal cortex substantially impairs later escape performance [94]. 
The deficit is completely reversed by adenosine receptor antagonists, 
suggesting that over activation lead to compensatory adenosine 
signaling, which then impairs performance [87]. Escape performance 
is also impaired by systemic treatment with the glycolytic inhibitor 
2-deoxy-D-glucose (2-DG) in a dose-dependent manner [95]. This 
effect of 2-DG is not a direct consequence of glucoprivation or 
metabolic inhibition per se. Escape deficits are completely eliminated 
by peripheral and central administration of caffeine and theophylline, 
but are not reversed by the peripherally acting receptor antagonist 
8-SPT. These data suggest that 2-DG compromises brain energy 
metabolism, resulting in compensatory adenosine regulation. Potent 
inhibition of brain substrates responsible for escape performance 
ultimately impairs performance.

Endogenous extracellular adenosine concentrations are regulated 
by two mechanisms. The nucleoside is converted to inactive insane 
and eventually to uric acid via a degradation pathway involving 
adenosine delaminate [32,96,97]. The nucleoside also is removed 
from the synaptic cleft via equilibrate nucleoside transporters (ENT1 
and ENT2), as well as an active transport system involving Na+ [98]. 
Adenosine is rapidly converted to 5’ AMP via adenosine kinase once 
inside the cell, which stops active gradient transport of the nucleoside. 
Disabling either of these regulatory mechanisms functionally 
increases synaptic adenosine concentrations and its action at 
extracellular receptors. Thus, if brain adenosine signaling mediates 
the escape deficits produced by initial exposure to inescapable shock, 
then enhancing the small and otherwise non-debilitating endogenous 
concentrations produced by prior restraint stress by either blocking 
degradation or uptake transport should disrupt test performance. 
Woodson et al [99] demonstrated that inhibiting adenosine 
delaminate, using erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), 
mimics the effects of inescapable shock on shuttle-escape performance 
in rats. Micro infusion of EHNA into the brain ventricles of previously 
restrained rats impaired test escape performance in a dose-dependent 
manner. This effect of EHNA, as well as the effect of earlier exposure 
to inescapable shock, was reversed by pretest treatment with 
adenosine receptor antagonist caffeine. A sub threshold dose of 

EHNA also interacted in synergy with preexposure to an ineffective 
number of inescapable shocks to maximally impair shuttle-escape 
performance at the time of testing. Increasing endogenous adenosine 
concentrations by blocking the uptake transporter yields a similar 
pattern of results [100]. Micro infusion of the nucleoside transport 
blocker S-(4-nitrobenzyl)-6-theoinosine (NBTI) into the right lateral 
ventricle of rats that underwent restraint stress 24 hours earlier 
produces a large deficit in shuttle-escape performance, which is 
comparable to that produced by prior exposure to inescapable shock. 
NBTI impairs escape performance in a dose-dependent manner. 
Moreover, a sub threshold dose of the adenosine uptake inhibitor 
NBTI acts synergistically with an ineffective number of inescapable 
preshocks to maximize deficits in test escape performance, suggesting 
that NBTI and inescapable shock are acting on the same neural 
mechanism. Analysis of the receptor mediating shock-induced 
and NBTI-induced escape deficits, using highly selective receptor 
antagonists, supported earlier evidence for an A2 receptor. Both 
types of deficits were reversed by the nonselective adenosine receptor 
antagonist caffeine and the highly selective A2A receptor antagonist 
CSC (8-(3-chloro-styrl) caffeine in a dose-dependent manner. The 
highly selective A1 (DPCPX: 8-Cyclopentyl-1,3-Dipropylxanthine) 
receptor antagonist failed to improve performance in rats preexposed 
to inescapable shock or receiving intra cerebral ventricular (i.c.v.) 
infusion of NBTI shortly before escape testing. These data strongly 
suggest that activation of A2A receptors mediates deficits in escape 
performance, regardless of whether those deficits occur because of 
prior stress or by enhancing endogenous adenosine signaling through 
pharmacological means. As discussed in detail later, A2A receptors 
have a limited and unique distribution in the CNS. Thus, these data 
have important implications for the anatomical locus and mechanism 
by which adenosine signaling mediates behavioral depression.

Adenosine Signaling in Screens of 
Antidepressant Activity

Two widely used screens for antidepressant activity include the 
forced swim test [101] and tail suspension test [102]. The forced 
swim test is conducted in mice or rats and involves subjecting the 
animal to an inescapable chamber for a given length of time. During 
testing, time spent struggling or swimming and time spent floating 
(immobile) are recorded. Increased time floating is interpreted as 
despair-like behavior. Established antidepressants increase time 
spent swimming, decreasing time spent floating. The tail suspension 
test is conducted in mice, and involves suspending the animal by 
its tail and recording time struggling versus time spent immobile. 
Interpretations are the same as those of the forced swim test, and 
antidepressants also decrease immobility time in this test. 

Vangelis and his colleagues have accumulated considerable 
evidence for a role of A2A receptor signaling in the forced swim and 
tail suspension tests (see El Yacoubi et al. 2003 [103] for a review). 
They argue on the basis of these data that A2A receptor antagonists 
may have potent antidepressant properties. Much of the evidence 
for the role of adenosine signaling in behavioral despair comes 
from studying A2A receptor knockout mice [15]. These mice showed 
increased mobility relative to wild types in both forced swim and tail 
suspension test [15,35,103]. Immobility scores in the forced swim task 
in CD1 mice (wild-type controls) are reduced in a dose-dependent 
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manner by caffeine and the highly selective A2A receptor antagonist 
SCH 58216. Similar results are obtained in the tail-suspension test. 
Moreover, the benefits of treatment with the A2A receptor antagonist 
in mice genetically selected for spontaneous helplessness were only 
slightly less than the benefits of the antidepressant imipramine. The 
benefits of an A2A receptor antagonist in these procedures are likely 
to result from an interaction with striatal dopamine. The dopamine 
D2 antagonist haloperidol increases immobility in both forced swim 
and tail-suspension tests [15,103]. Moreover, co treatment with 
haloperidol mitigates the behavioral activating effects of caffeine 
in these procedures. Interestingly, co treatment with haloperidol 
and SCH 58216 decreased the activating effect of the A2A receptor 
antagonist on spontaneous activity, but did not alter its benefits in 
behavioral despair paradigms.

Adenosine Signaling in Reserpine-Induced 
Forced Swim Test Deficits

Huang and Minor [17,87,104] treated rats with an i.p. injection of 
6 mg/kg of reserpine and then tested independent groups in a forced 
swim task for symptoms of conservation-withdrawal at various times 
thereafter. Large deficits in swim performance, as characterized by 
a large increase in floating time, were evident as early as 1 h post 
drug treatment, persisted for at least 72 h, and recovered within a 
week. The determinants of reserpine-induced depression are complex 
and change over time. Moreover, the impairment is likely to be a 
“downstream” consequence of reserpine effect on the monoamines 
rather than a direct result of their depletion per se. Adenosine plays 
a critical role in swim deficits as early as 1 h post drug treatment 
and continues to be a critical mediator at all time points thereafter. 
Caffeine and the highly selective A2Areceptor antagonist CSC reverse 
swim deficits at all time points under study [16]. A1 and A2Breceptor 
antagonists have no such effect [16]. Figure 3 show the effect of A2A 
receptor antagonist CSC on reserpine-induced swim deficits Figure 3.

The proinflammatory cytokine interleukin-1β (IL-1β) increases 
dramatically in the hypothalamus and to a lesser extent in the 
hippocampus 48–72 h after reserpine treatment and then returns to 
normal levels in the brain within 168 h. In this context, the IL-1β 
receptor antagonist has no effect on swim deficits 1 h after reserpine 
treatment, but substantially improves performance 48 h later. 
Although there is only a small literature on the potential interactions 
between adenosine and IL-1β, it is clear that these pathways interact. 
For instance, application of endotoxins or IL-1β on PC12 or THP-
1 cells up regulates the density of A2A receptors and increases 
extracellular concentrations of adenosine [105,106]. Furthermore, 
the A2Aantagonist CSC reverses forced swim test deficits induced by 
IL-1β (Figure 4).

Effort-Related Choice and Adenosine 
Signaling 

Major depressive disorder is characterized by profound 
motivational deficits [68,69] that have been described as anergia [20], 
fatigue [20], and motivational anhedonia [107]. Depressed patients 
show impairments in effort-related decision making and prefer low 
effort/low reward options to high effort/high reward options [108].
This effort-related choice has been well characterized as an animal 
model of the motivational symptoms of depression [20,22,23]. Salam 
one and colleagues have used a task to assess effort-related choice 
extensively. In this procedure, animals are given a choice between a 
high effort, high reward option (lever pressing for sugar pellets) and a 
low effort, low reward option (freely available lab chow with no work 
requirement). This task has been dubbed the concurrent operant/
chow feeding choice procedure. In this task, shifts in effort-related 
choice (decreases in lever pressing with concurrent increases in chow 
consumption) are proposed to be analogous to anergia or fatigue 
commonly seen in depression [18,20,23]. Another task that measures 
effort-related choice used by the Salam one lab is the T-maze barrier 
choice task. In this paradigm, animals are also given a choice between 

Figure 3: The A2A antagonist CSC (1.0 mg/kg i.p.) reverses the depressive 
effects of reserpine (6.0 mg/kg i.p.) in forced swim testing. CSC (1.0 mg/
kg) by itself has no effect on swim performance. Figure taken from Minor 
and Hanff 2014 [16] #p<.05, different from DMSO (reserpine vehicle). *p<.05, 
different from 6.0 mg/kg reserpine (single factor ANOVA with Newman-Keuls 
post-hoc test).

Figure 4: The A2A antagonist CSC (1.0 mg/kg i.p.) reverses the depressive 
effects of Interleukin 1-β (2 ng uni lateral i.c.v.) in forced swim testing. CSC 
by itself has no effect on swim performance. Figure taken from [113] #p<.05, 
different from vehicle. *p <.05, different from IL1-β (single factor ANOVA with 
Newman-Keuls post-hoc test).
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a high effort/high reward option and a low effort/low reward option. 
In one arm of the T, animals can approach and consume 2 sugar 
pellets. In the other arm, animals can earn 4 sugar pellets, but they 
must climb over a 44 cm barrier to get to them. In both of these tests 
of effort, adenosine signaling has shown a clear contribution.

D1 antagonism [109], D2 antagonism [109,110], as well as 
dopamine depletions [20] were all shown to produce impairments in 
effort, shifting behavior away from high effort choices. In all three 
cases, concurrent administration of an adenosine A2A antagonist 
reverses these impairments, restoring lever presses to baseline and 
decreasing consumption of freely available lab chow. Moreover, 
administration of A2A antagonists alone has very little effect on 
fixed-ratio responding [111]. In line with data from Minor and 
colleagues [16] demonstrating A1 receptor antagonists do not reverse 
impairments in the forced swim test, A1 receptor antagonists also 
do not reverse impairments in exertion of effort induced by D1 or 
D2 antagonism in the operant/ concurrent chow feeding choice 
procedure [23]. 

In the operant/concurrent chow feeding choice procedure, 
adenosine A2A receptor stimulation with micro infusions of CGS21680 
into the nucleus accumbency was shown to produce impairments in 
effort [19], decreasing lever pressing and increasing chow intake. 
These data directly demonstrate a role of adenosine signaling at A2A 
receptors in fatigue-like processes.

Data from the Salam one lab has shown the same pattern of 
results in the T-maze barrier choice task. Adenosine A2A antagonists 
reverse impairments in effort induced by D2 antagonism [21,112]. 
Furthermore, A2A receptor knockout mice do not show haloperidol-
induced impairments in effort [21], suggesting that A2A receptor 
activation is necessary for D2 antagonist-induced impairments in 
effort. 

In line with data collected by Minor and colleagues [17], the 
pro-inflammatory cytokine IL-1β has effects on effort-related choice 
[18], producing behavioral effects that resemble those of dopamine 
antagonism. Just as swim deficits induced by IL-1β are reversed by 
A2A antagonism [17], effects on effort-related choice are also reversed 
by A2A antagonism [18]. 

Conclusion
Adenosine signaling plays a role in several animal models of 

depression. Learned helplessness, forced swim, tail suspension, and 
effort-related choice are all affected by manipulations of adenosine 
neurotransmission. Blockade of A2A receptors reverses impairments 
in these behaviors; andA2A antagonists have behavioral effects 
that resemble those of antidepressants. Moreover, stimulation 
of A2A receptors and manipulations that increase adenosine 
neurotransmission produce deficits in these behaviors. Taken 
together, evidence suggests adenosine A2A receptors could prove to 
be a useful target for treating depression, and future research should 
address this.
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