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Abstract

Background: Bipolar disorder is a severe, enigmatic condition that 
continues to be poorly understood and difficult to treat. True advances in the 
improvement of the prognosis of this condition will quickly follow insight into its 
pathogenesis. Ion dysregulatory abnormalities have remained among the most 
reproducible pathophysiologic alterations in this disease. 

Methods: A directed review of studies examining the pathophysiology of 
bipolar illness was performed.

Results: Several lines of evidence support a central role of ion dysregulation 
in the pathogenesis of this disorder. Over 75% of all genes associated with 
bipolar illness are genes that control ion regulation. Measures of intracellular 
sodium and calcium reveal consistent abnormalities. Endogenous regulators of 
ion pumps appear to be dysregulated in bipolar patients. All effective agents 
share common mechanisms of reducing neuronal sodium influx and cellular 
excitability. And modeling these abnormalities in animals and in vitro produces 
manic-like, depressive-like behaviors, and cycling.

Conclusion: A model is presented by which ion dysregulation can produce 
most of the characteristics of bipolar disorder. 
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Methods
This was a directed review, which means that specific topics 

within the area of ions and bipolar illness were specifically reviewed. 
Literature regarding ions and genes/genetics, intracellular ion 
perturbations, endogenous regulators of ion channels and pumps, 
role of ion dysregulation in cellular/neuronal function and imaging, 
mechanisms of action of effective mood stabilizing agents, and animal 
models of bipolar illness was searched and reviewed. Two databases, 
PubMed and Google Scholar, were used. 

Results and Discussion
Early studies

Initial interest in the role of ion dysregulation in bipolar illness 
began shortly after the demonstration that lithium, a monovalent 
cation, was effective in the treatment of bipolar illness [11]. The 1950s 
was a time of significant advances in the understanding of neuronal 
function – how resting and threshold potentials are maintained, and 
what causes neurons to fire [12] as well as the discovery of the sodium 
pump and ion channels [13]. It was thus a natural connection to study 
ion dysregulation in bipolar patients. Those early studies focused on 
peripheral red and white blood cells. Experiments were performed in 
“metabolic units”, where research subjects were maintained for weeks 
in environments in which the total intake of all important cations was 
carefully controlled. In these experiments it was found that intra-
erythrocyte sodium concentrations were elevated in manic patients 
[14,15]. Studies utilizing whole body distribution of radioactive 
sodium (24Na), potassium (40K), and bromine (82Br) to calculate 
concentrations in extra vascular compartments, determined that 
intracellular sodium is increased throughout the body of ill bipolar 

Introduction
Bipolar illness is a severe psychiatric condition that manifests 

as episodes of mania and depression, interspersed within a baseline 
that is initially normal but declines as a function of the duration of 
time spent ill [1]. Effective treatments are available, but effectiveness 
is suboptimal, and social and occupational dysfunction is a common 
outcome [1]. The major deterrent to developing more effective 
treatments is inadequate understanding of the pathophysiology and 
pathogenesis of the illness. Pathophysiology describes biochemical 
changes that occur during the ill phases of the disorder. Pathogenesis 
alludes to the actual cause of the disorder – the ‘primary fault’ that 
results in the cascade of brain events that produce mania, depression, 
and other features of the disorder. While research into both of these 
arenas is limited, synthesis of the available research is nearly absent. 
This review will focus on ion flux dysregulation as one of the most 
promising aspects to understanding the disorder. 

Abnormalities in the transport and intracellular concentrations 
of several ions have been repeatedly reported in bipolar disorder. 
Specifically, nearly 75% of the susceptibility loci that have been linked 
to bipolar illness include genes that are involved in ion regulation 
[2]. Measures of intracellular sodium and calcium reveal consistent 
abnormalities [3,4]. Endogenous regulators of ion pumps appear 
to be dysregulated in bipolar patients [5]. All effective agents share 
common mechanisms of reducing neuronal sodium influx and 
cellular excitability [6,7]. And modeling these abnormalities in 
animals and in vitro produces manic-like, depressive-like behaviors, 
and cycling [8-10]. This review will examine the literature regarding 
ion dysregulation in bipolar illness. 
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patients but not euthymic patients [3,16]. The increases of “residual 
sodium” (which included intracellular sodium and a small fraction of 
bone sodium) in mania were 400% that of control, and in depression 
some 200% of control [3]. These values normalized with treatment.

These studies led to a large number of subsequent studies that 
looked at the activity of the sodium- and potassium-activated 
adenosine triphosphatase pump (the sodium pump or Na, K-AT 
Pase) in erythrocyte membranes of bipolar patients [17-19]. A meta-
analysis of these studies found that sodium pump activity was indeed 
reduced in manic and depressed patients compared to both euthymic 
bipolar subjects and non-bipolar controls [20]. The reduction of 
pump activity compared to euthymic bipolar subjects was greater 
in depressed patients (effect size -0.62, confidence interval -1.01 to 
-0.23, p = 0.002) than in manic patients (effect size -0.42, confidence 
interval -0.69 to -0.15, p = 0.002) [20]. These findings, among others, 
were the basis for the introduction of the sodium pump hypothesis 
for bipolar illness (Figure 1) [21]. This hypothesis argued that a slight 
reduction in sodium pump activity resulted in manic symptoms, 
whereas a greater reduction could result in depressive symptoms and 
catatonia (Figure 1). 

Genetic and ion channel studies
Genetic studies have been frustratingly vague. Many associated 

genetic anomalies have not been reproducible. Nonetheless, nearly 
75% of these genes that have been identified are involved in ion 
transport and regulation [2]. The most significant of these have been 
genes directly involved in ion regulation. These include CACNA1C 
(calcium channel, voltage-dependent, L type, alpha 1C subunit) 
[22], ANK3 (ankyrin 3 or node of Ranvierankyrin G) [22-25], and 
KCNQ2 (Kv7.2, voltage gated KQT-like subfamily Q, member 
2, potassium channel) [26-28]. CACNA1C is a calcium pump 
protein that is involved in the regulation of intracellular calcium 
concentration. Variants that have been associated with bipolar illness 
are associated with increased basal intracellular calcium in bipolar 
patients [29]. Ankyrin is a cytoskeletal protein that is essential for 

binding of ion pumps and ion channels [27]. KCNQ2 has binding 
motifs for the ankyrinprotein; binding to this cytoskeletal protein 
allows the potassium channels to be localized in the proper area 
of the membrane and to function appropriately [30]. Along with 
KCNQ3 (Kv7.3), KCNQ2 interacts with the ankyrin at the first axonal 
segment to inhibit repetitive firing to prevent neuronal hyperactivity 
[27,31]. Reducing activity of KCNQ2 in transgenic mice induces 
hyperactivity, cognitive decline, and neuronal hyper excitability [32]. 
Lithium may indirectly affect the protein products of KCNQ2 and 
KCNQ3 by inhibiting their phosphorylation via inhibition of GSKβ 
(which phosphorylates Kv7.2 and Kv7.3) [26].

Endogenous sodium pump regulators
Early measures of increased intracellular sodium and reduced 

sodium pump activity were generally performed on circulating red 
blood cells. Two factors, the first being that erythrocytes do not 
possess a nucleus, and the second being that these changes are clearly 
mood-state (not trait) related, suggest that some circulating factor 
is responsible for these changes. The Na, K-ATPase is known to be 
the physiologic target for cardiac glycosides, digoxin and ouabain. 
More recently, it has been discovered that cardenolides with chemical 
structures very similar to the plant-derived digoxin and ouabain 
[33,34] are made endogenously in the adrenal and central nervous 
system of mammals [35,36]. These endogenous cardenolides function 
in the body the same as their plant-derived look-alikes. Specifically, 
they have a biphasic curve where low, physiologic concentrations 
stimulate the sodium pump, while higher, pharmacologic 
concentrations inhibit the pump [37,38]. Consequently, if the reduced 
activity of erythrocyte Na, K-ATPase in mania and depression has 
anything to do with circulating endogenous cardenolides, one would 
expect reduced circulating levels of these cardenolides.

Euthymic type I bipolar subjects have reduced levels of the 
Ouabain-Life Factor (OLF) [39]. But more importantly bipolar 
patients are unable to increase levels of ouabain-like factors at 
times that normal control subjects have increased levels of OLF. 
Specifically, exercise to exhaustion is known to increase levels of 
endogenous cardenolides [40], however, when euthymic bipolar 
patients are instructed to exercise to exhaustion, they are unable to 
exercise as extensively as non-bipolar controls [41], and they produce 
lower levels of OLF [39]. Similarly, it has been found that endogenous 
cardenolide levels normally have a seasonal pattern in which levels 
are low in the winter, but significantly higher in the spring, summer, 
and autumn [42]. However, bipolar patients have lower, winter-
like levels throughout the entire seasonal cycle [42]. Inability to 
regulate production of endogenous cardenolides increases the risk 
for bipolar patients to have lower levels of these cardenolides when 
there is a physiologic need to have higher levels. For example, in 
normal pregnancy there is an increase in the endogenous OLF and 
a corresponding drop in blood pressure (because at physiologic 
concentrations OLF increases sodium pump activity) [43,44]. 
This higher concentration of OLF drops rapidly within 3 -5 days 
of delivery, but remain higher than baseline [44]. OLF in pregnant 
women with bipolar has not been measured, but would be expected 
to be lower during pregnancy – possibly playing a role in making 
such pregnancies higher risk – and to drop faster than occurs in 
non-bipolar subjects – possibly increasing the risk for post-partum 
depression or psychosis.

Figure 1: The sodium pump hypothesis purports that as sodium pump activity 
decreases and intracellular sodium increases, one of the changes that occurs 
is that the resting potential moves closes to the threshold potential. Thus, the 
two poles of bipolar illness are actually related to a monopolar pathologic 
process in which resting potential departs from the normal range (A). 
Slightly depolarized neurons are easier to stimulate and are less regulated, 
corresponding to manic symptoms (B). When a fraction of neurons enters 
into depolarization block, depressive symptoms appear (C). When a large 
number of neurons enter into depolarization block, the patient appears to be 
catatonic (D) [21].
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Clinical membrane potential measurements
If sodium pump activity and cytoskeletal proteins associated 

with ion regulation are altered, or ion channels are dysfunctional, 
or regulatory proteins are under expressed, then one might expect 
membrane potential of cells to be altered in pathologic mood states of 
bipolar patients. Indeed, examination of Transmembrane Potentials 
(TMP) in lymphocytes from manic type I patient’s reveals that the 
TMP of these cells is altered [45]. This is a state-related abnormality 
since while manic subjects have hyperpolarized circulating 
lymphocytes this membrane potential difference approaches normal 
with euthymia [45], and immortalized lymphoblasts of patients with 
bipolar illness and unaffected family members are not different from 
normal control subjects [46]. Lithium treatment would be expected 
to normalize the altered TMP [47], and may be responsible for 
normalization of intracellular ion concentrations [48]. These findings 
are important in their own right, but were also utilized as the basis for 
a potential diagnostic blood test for bipolar illness in which TMP is 
measured in ionically-stressed peripheral blood cells of symptomatic 
patients [49,50].

Imaging studies
Early PET imaging studies showed that whole brain glucose 

utilization was decreased in patients diagnosed with bipolar disorder 
compared with others [51]. Animal imaging studies demonstrated 
that animals that receive intracerebroventricular ouabain similarly 
have low levels of brain glucose utilization, but animals receiving 
ouabain with lithium pretreatment normalize glucose uptake [52]. 
Imaging studies also determined that the most abnormal glucose 
utilization was in the frontal lobe (the target of many antidepressant 
drugs) and the basal ganglia [53-55]. SPECT studies of the brain 
showed that patients with bipolar disorder have lower cerebral blood 
flow that is more evident in the frontal cortex and basal ganglia [56].

The sodium pump of the Na, K-ATPase utilizes about half of 
the brain’s total metabolic demand [57]. Therefore, low glucose and 
cerebral blood flow have direct effects on the function of the Na, 
K-ATPase and ion regulation in the brain.

Several different neurotransmitters have been implicated as being 
irregular through imaging studies in bipolar disorder. This includes 
dopamine [58-60], serotonin [61,62], GABA [63,64], and glutamate 
[65,66]. Because so many different neurotransmitters are irregular in 
bipolar disorder, it is logical to assume the pathogenesis is upstream 
from the individual neurotransmitters. The disorder most likely 
involves an irregularity before the synapse.

Animal models
Animal models are ultimately essential for confirming any 

hypothesis of pathogenesis of bipolar illness. Human studies can 
confirm associations and determine if predictions are indeed 
accurate, but can never produce cause-effect data, which are needed 
to determine that an abnormality causes a disease. Thus, while it 
may be difficult to know if an animal is “manic” or “depressed,” 
animal models are, nonetheless, the strongest evidence that can be 
provided. Several animal models demonstrate that alterations of ion 
homeostasis induce both manic-like behavior and depressive-like 
states in rodents.

A pharmacologic model in which ouabain, a potent inhibitor 

of brain-specific sodium pumps (α1 and α2 subunits of the Na, 
K-ATPase), is administered Intracerebroventricularly (ICV) to rats 
demonstrates that the rats will display for hyper- and hypo activity 
in a dose-related manner [67-69]. Lithium, and to some degree 
carbamazepine, reduce or normalize abnormal ouabain-induced 
behavioral changes [36,68]. The antipsychotics, haloperidol and 
cariprazine also normalize behavior in rats receiving ICV ouabain, 
and both agents are useful in mania [70-72]. This may be due to the 
activation of Na, K-ATPase activity by dopamine blockade [7]. 

Use of dihydro-ouabain in an in vitro model of stimulus-response 
in rat hippocampus slices is the only pre-clinical model for rapid 
cycling [8].

Genetic models have also been introduced. Knocking out the α3 
isoform of the Na, K-ATPase produces behavior in rats that resembles 
both mania and depression and responds to treatments that may be 
helpful in patients with bipolar illness [10,73,74]. 

Downstream consequences of ion dysregulation
Increased intracellular sodium can alter other more active ions 

such as calcium and hydrogen (protons). Increases in free intracellular 
calcium as a function of mood state have been reported in peripheral 
blood cells of bipolar patients, including both platelets [4,75,76]and 
white blood cells [4]. Alterations in intracellular calcium may affect 
multiple second messenger systems [77,78]. This, in turn, can alter 
multiple cellular processes including excitability, mitochondrial 
activity, and resilience to apoptotic stimuli [79,80]. Additionally, there 
is an intimate relationship between elevated intracellular calcium and 
inflammation processes [81]; the latter has been associated with the 
pathophysiology of bipolar disorder [82].

Similarly, brain-imaging studies that measure intracellular pH 
have demonstrated a lower pH (i.e., higher proton concentrations) 
in unmediated bipolar adults [83,84] and manic adolescents [85]. 
Lithium and other mood stabilizers alkalize the cytoplasm [86,87]. 
These alterations may have a wide range of consequences in bipolar 
patients. Similarly, alterations in cytoplasmic pH will alter multiple 
aspects of neuronal function [88].

Both elevated intracellular calcium and hydrogen are targets of 
treatment in bipolar illness. Calcium channel blockers have been 
used successfully for the treatment of bipolar illness [89], but their 
use has not caught on for several reasons [90,91]. Similarly, reduced 
intracellular pH may respond to acidification of extracellular fluid 
as with the ketogenic diet [92], so that bipolar patients may achieve 
stability if they remain on the ketogenic diet [93].

Integrative model for pathogenesis of abnormal mood 
states

One of the mysteries of bipolar illness is the fact that the brain 
functions essentially normally in between episodes, but is quite 
impaired during an episode. While it is conceived as a mood disorder, 
it is clear that all aspects of brain function are impaired during an 
episode including motor movements, sensory perception, cognition, 
speed of response and processing, neuroendocrine function, and 
mood. Interepisode cognitive dysfunction is a late phenomenon, and 
probably occurs as a consequence of the neurotoxic aspects of mania 
and depression. Consequently, the essence of bipolar illness can be 
considered as episodic brain dysfunction. Any proposed hypothesis 
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regarding the pathophysiology must take periods of normal brain 
function into account.

The studies reviewed in this paper suggest that a primary fault in 
ion transport or regulation can result in both manic and depressive 
symptoms. It is proposed that changes in resting membrane potential 
of both neurons and glia can produce both manic and depressive 
symptoms (Figure 1). These changes in membrane potential are found 
throughout and can actually be measured in ill patients. While the 
original hypothesis focused on sodium pump activity [21], changes 
in membrane potential can be brought about by changes in sodium 
channel, potassium channel, or sodium pump activity. These changes 
can be caused directly by abnormalities in the actual channels (such as 
the potassium channels), or indirectly by alterations in the cytoskeletal 
proteins supporting the channels (ankyrin G). The periodicity of this 
dysfunction may be related to rhythm control genes (CLOCK gene), 
or by ion transport regulating hormones that are inappropriately 
elaborated (endogenous cardenolides). 

This hypothesis is consistent with treatment response. Nearly all 
effective treatments used in bipolar illness reduce the concentration of 
sodium, calcium, or hydrogen either directly or indirectly [6,7]. The 
most effective mood stabilizers are agents that reduce intracellular 
sodium accumulation in an activity-dependent fashion (i.e., lithium, 
valproic acid, carbamazepine, and lamotrigine). 

Nonetheless, there is great heterogeneity in the presentation, 
genetics, and treatment response in people with bipolar disorder. This 
suggests the presence of endophenotypes in this condition. Ongoing 
research examining the ion regulatory apparati in bipolar disorder is 
required to clarify the actual pathoetiologic mechanisms.
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