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Abstract

Taurine (2-aminoethanesulfonic acid) is a sulfur-containing amino acid 
that is involved in a variety of physiological functions. Considering that many 
reports indicate that taurine participates in the development of diabetes and 
also appears to play a role in the pathophysiology of depression, the aim of 
this study is to highlight the insulin and/or clonazepam effect on plasma and 
cerebral cortex taurine concentrations of diabetic rats submitted to forced 
swimming test. Previous studies of our group showed that diabetic rats present 
depressive-like behavior and oxidative damage to biomolecules and that the 
association of insulin plus clonazepam is able to reverse this process. In the 
present study, it was verified a longer immobility time in diabetic rats, which 
was prevented by insulin plus clonazepam acute treatment. Moreover, taurine 
concentrations were decreased in plasma and increased in cerebral cortex from 
the rats, demonstrating that in this experimental animal model of diabetes and 
depression occurs a deficiency of this important amino acid in plasma, as well 
as a high uptake by the brain. It was also observed that these effects were 
corrected by the insulin and/or clonazepam acute treatment, suggesting that this 
therapeutic association is important to restore taurine homeostasis in diabetic 
rats under depressive-like behavior.

Keywords: Diabetes; Depression; Oxidative stress; GABA agonist; 
Osmoregulation; Cerebral edema

Evidence suggest that Gamma-Amino Butyric Acid (GABA) 
neurotransmitter plays a role in the pathophysiology of depression, 
since GABA agonists, like clonazepam, have been prescribed as 
adjuvant for the treatment of depression in humans [19,20]. In this 
context, taurine acts as an agonist at inhibitory GABA subtype a 
receptors (GABAA) [1] and its supplementation modulates glucose 
homeostasis and regulates insulin release from pancreatic beta cells, 
improving the glycemic profile in diabetic individuals [21-24].

Preclinical studies have also shown that diabetic rats and mice 
have more depressive-like behaviors than non-diabetic animals in 
the Forced Swimming Test (FST), since the duration of immobility 
time is longer in diabetic when compared to nondiabetic animals in 
this experimental animal model of depression [16,25]. Insulin plus 
clonazepam treatment reversed the prolonged immobility in diabetic 
rats [26]. Furthermore, it was verified that the association of insulin 
plus clonazepam in an acute administration was able to partially 
reverse this effect [27]. Considering that many reports indicate that 
taurine participates in the development of diabetes and also appears 
to play a role in the pathophysiology of depression, the purpose of 
this study is to investigate the insulin and/or clonazepam effect on 
plasma and cerebral cortex taurine concentrations of diabetic rats 
under depressive-like behavior.

Materials and Methods
Animals

Male Wistar adult rats (250-300 g), born and reared in the animal 

Introduction
Taurine, a 2-aminoethanesulfonic acid, is one of the most 

abundant free amino acid in the central nervous system and in the 
peripheral tissues [1], accounting for approximately 0.1% of total 
human body weight [2]. The main source of taurine in humans is the 
diet and the rate of endogenous synthesis is relatively low [3]. The 
physiological and therapeutic properties of this amino acid have 
been studied. Taurine modulates a variety of fundamental biological 
functions, including anti-oxidation, Ca2+ transport regulation, anti-
inflammation, osmoregulation [2,4], anti-obesity action [5], neuronal 
modulation, protection against oxidative stress [6] and hypoglycemic 
action [7-9]. 

Several studies indicate that taurine participates in the 
development of diabetes, since its plasma concentrations are found 
to be low in these patients [10,11], suggesting that diabetes can be 
considered a taurine-deficient condition [2]. Moreover, this amino 
acid is involved in mental disorders such as depression, since it 
was demonstrated that taurine is greatly diminished in plasma and 
cerebrospinal fluid of depressive patients [12] and it was verified 
that its supplementation had an antidepressant effect in diabetic 
rats exposed to Forced Swimming Test (FST) [13]. In fact, there is a 
well-known link between depression and diabetes, since studies have 
shown that diabetic individuals present more depressive behaviors 
that non-diabetic individual [14-18]. 
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facility of Universidade Federal de Ciencias da Saude de Porto Alegre 
(UFCSPA), Brazil, were housed in polypropylene cages (40x33x17 
cm), four per cage, under standard environmental conditions, such as 
a room temperature of 22±2ºC and a 12 h light-dark cycle (7:00 a.m.-
7:00 p.m.). All rats had free access to food and water. The animals were 
divided into five groups: controls (nondiabetic); diabetics submitted 
to FST (STZ+FST); diabetics submitted to FST treated with insulin 
(STZ+FST–INS); diabetics submitted to FST treated with clonazepam 
(STZ+FST–CNZ); and diabetics submitted to FST treated with insulin 
plus clonazepam (STZ+FST–INS+CNZ). All groups were submitted 
to FST plus Streptozotocin (STZ), except control group that was not 
submitted to STZ. Our experimental protocol was carried out in 
accordance with the National Institute of Health Guide for the Care 
and Use of Laboratory Animals and in accordance with the Brazilian 
Law for the Scientific Use of Animals after its approval by the Ethical 
Committee for Animal Experimentation at UFCSPA (050/11). All 
efforts were made to minimize animal suffering and to use only the 
number of animals necessary to produce reliable scientific data.

Drugs
Clonazepam (0.25 mg/mL; Rivotril®, Roche, Brazil) and 

streptozotocin (60 mg/mL; Sigma, St. Louis, MO, USA) was prepared 
in citrate buffer (pH 4.3). Insulin (dose, 4 IU/mL) was administered 
intraperitoneally (i.p.) (Humulin®, Lilly, USA). It should be noted 
that prior to the experiment it was conducted a pilot study with the 
insulin dose cited to verify its efficacy in this model and avoid the 
risk of hypoglycemia in the animals. All solutions were prepared 
immediately before i.p. administration.

Diabetes induction
Nondiabetic control rats received i.p. injections of saline (1 

mL/kg) and were also submitted to blood glucose measurement to 
confirm that they presented normal blood glucose levels. Diabetes was 
induced by a single i.p. dose of STZ, 60 mg/kg, as described previously 
[16]. Increased blood glucose levels (≥13.875 mM) of STZ-rats (blood 
collected from tail) were confirmed with a glucometer (AccuChek 
Active®, Roche, Germany) after 72h. All animals became diabetics.

Forced swimming test (FST)
After 21 days of diabetes induction, animals were submitted to 

the FST [28]. On the first day of the experiment (training session), 

24h before the FST, the animals were placed in the aquarium for 15 
min (22×22×35 cm) with water level of 27 cm and water temperature 
of 25+2oC. Soon after, the rats were gently dried with towels and the 
first drug dose was administered i.p. (insulin 4 IU/kg, clonazepam 
0.25 mg/kg i.p., insulin 4 IU/kg+clonazepam 0.25 mg/kg or 1 mL/
kg saline). The FST session was performed after 24h, in the same 
conditions described above, lasting for 5 minutes. The animals received 
additional dosing of their respective treatments 5 and 1h before being 
submitted to the FST. Behaviors in the test session were recorded 
for subsequent ethological analysis by a trained researcher who was 
blind to the different treatments (BASIC software, Kevin Willioma, 
KD Ware Computer, Boston, MA). Immobility was defined as the 
sum of the freezing and floating behaviors. The antidepressant effect 
of the drugs was inferred when they decreased immobility duration 
behaviors. All behavioral experiments were performed between 1:00 
and 5:00 p.m. It is important to note that a control group was added 
in the FST to elucidate the behavioral changes of diabetic animals.

Brain micro dissection and tissue preparation
Thirty minutes after the FST, the animals were sacrificed by 

decapitation and brains were immediately removed and kept on 
an ice-plate. Cerebral cortex were dissected and kept chilled until 
homogenization. The cerebral cortexes were homogenized 1:10 w/v 
in 20 mM sodium phosphate and 140 mM KCl (pH 7.4) buffer. 
Homogenates were centrifuged at 750g for 10 min at 4°C and the 
supernatant was immediately used for measurements.

Taurine determination
The free amino acid taurine in plasma was determined by HPLC 

method [29], using fluorescence detection. Taurine was quantitatively 
determined by relating its chromatographic peak area with those 
obtained from a known standard mixture and with the internal 
standard peak area (homocysteic acid). The results were expressed as 
Umol/L.

Statistical analyses
Statistical analyses were performed using independent-samples 

T test and one-way analysis of variance (ANOVA), followed by 
the Duncan multiple range test when appropriate. The Pearson 
correlation test was used to evaluate the correlation between the 
biochemical variables. Figures data were expressed as mean±standard 
error of mean (SEM) and table data were expressed as Mean±Standard 
Deviation (SD). All analyses were performed using the Statistical 
Package for the Social Sciences (SPSS 14.0 for Windows Evaluation 
Version) software. A P value < 0.05 was considered as statistically 
significant difference.

Results
Glycemia of animals from the different groups after FST and 

before the decapitation is shown in Table 1. It can be observed 
that isolated insulin or insulin plus clonazepam acute treatment 
significantly decreased glycemia when compared to non treated 
diabetic rats (STZ) [F(4,42)=58.539 P<0.001]. As expected, clonazepam 
treatment did not modify the diabetic rat’s glycemia. 

Table 2 shows body weight soon before forced swimming test 
training session and 24 hours water consumption after 6 and 11 days 
of diabetes induction from streptozotocin-induced diabetic rats and 

Groups Nº of Rats
Blood glucose levels (mM)

(mean ± SD)

Control 9 5.91 ± 0.94

STZ+FST 10 29.22 ± 3.59*

STZ+FST-INS 10 19.66 ± 4.61*#

STZ+FST-CNZ 8 29.37 ± 3.38*

STZ+FST-INS+CNZ 10 22.47 ± 4.72*#

Table 1: Blood glucose levels 30 min after forced swimming test and before 
the decapitation from streptozotocin-induced diabetic rats submitted to forced 
swimming test not treated (STZ+FST) and treated with insulin (STZ+FST-INS) or 
clonazepam (STZ+FST-CNZ) or insulin plus clonazepam (STZ+FST-INS+CNZ) 
(n=8–12) and controls (n=9). Data represent mean ± S.D. * p<0.05 compared to 
the control group (ANOVA followed by DUNCAN test).

SD: Standard Deviation; STZ: Streptozotocin; INS: Insulin; CNZ: Clonazepam; * 
P<0.05 compared to the control; # P<0.05 compared to STZ+FST group (ANOVA 
followed by DUNCAN test).
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controls. It can be seen that diabetic animals lost weight during the 21 
days of induction of diabetes and increased daily water consumption, 
which classically occurs in an experimental model of streptozotocin-
induced diabetes (p<0.05). 

Figure 1 shows the immobility time of STZ rats submitted to FST 
treated or not treated with insulin and/or clonazepam and controls. It 
is possible to observe that STZ-induced diabetic rats presented longer 
immobility time when compared to control group [F(4,42)=3.183 
P<0.05]. Moreover, the association of insulin plus clonazepam acute 
treatment was capable to reverse this depressive-like behavior. 

Plasma taurine levels from animals treated or not with insulin 
and/or clonazepam are presented in Figure 2. It can be verified that 
plasma taurine concentrations were significantly decreased in STZ 
groups treated or not with insulin or clonazepam when compared 
to control group. Furthermore, plasma taurine concentration was 
reverted to control levels by insulin plus clonazepam acute treatment 
[F(4,42)=3.775 P<0.05]. 

As shown in Figure 3, the cerebral cortex taurine levels from 
untreated STZ rats submitted to FST were significantly increased 
when compared to control group and only treatment with insulin 
reverted to control levels [F(4,39)=3.477 P<0.05]. 

It is noteworthy that a significant positive correlation between 
glycemia and the immobility time (r=0.308; P<0.05) and between 
glycemia and cerebral cortex taurine levels (r=0.377; P<0.05) were 
observed in treated and untreated STZ-rats submitted to FST. 
Moreover, a negative correlation between glycemia and plasma 
taurine levels (r=-0.440; P<0.01) and also between plasma and 

cerebral cortex taurine levels (r=-0.344; P<0.05) were observed in 
treated and untreated STZ-rats submitted to FST. However, the 
correlation between glycemia and taurine in both plasma and cortex 
is not strong.

Discussion
Considering the higher depressive-like behavior in diabetic mice 

and rats submitted to the forced swimming test and the beneficial 
effects of insulin and/or clonazepam treatment on behavioral changes 
and oxidative stress parameters in plasma [27,30], liver [31] and brain 
[18,32] of these animals, our goal in this study was to investigate 
the effect of these drugs on plasma and cerebral cortex taurine 
concentrations in diabetic rats under depressive-like behavior, since 
this amino acid has shown to exert hypoglycemic and antidepressant 
actions in previous studies. 

Therefore, it was determined the glycemia status and the immobility 
time from the animals in order to evidence the experimental animal 
model of diabetes under depressive-like behavior. Our findings 
showed that STZ-induced diabetic rats presented significantly 
increased glycemia and longer immobility time. Treatment with 
insulin plus clonazepam reversed the immobility time in FST, 
providing evidence of an antidepressant effect of this association in 
this experimental animal model, which was not evidenced by only 
insulin or clonazepam treatments. 

The hypoglycemic effects of taurine in plasma from diabetic 
animal models and in humans have been intensively studied in the 
last few decades, but underlying mechanisms have not been still 
totally elucidated. Multiple mechanisms are reported to be involved: 

Groups Nº of Rats Body weight (g)
(mean ± SD)

24h water  consumption (mL/cage) after 6 
days of STZ
(mean ± SD)

24h water consumption (mL/cage) after 11 days of STZ 
(mean ± SD)

Control 9 274.44 ± 25.79 200.00 ± 70.71 175.00 ± 35.35

Diabetic rats (STZ) 38 248.16 ± 21.23* 600.00 ± 100.00* 612.50 ± 118.94*

Table 2: Body weight soon before forced swimming test training session and 24h water consumption after 6 and 11 days of diabetes induction from streptozotocin-
induced diabetic rats (STZ) (n=38) and controls (n=9). Data represent mean ± S.D. * p<0.05 compared to the control group (Independent-samples T Test).

SD: Standard Deviation; STZ: Streptozotocin; * P<0.05 compared to the control (Independent-samples T Test).

Figure 1: Immobility time from streptozotocin-induced diabetic rats submitted 
to the forced swimming test not treated (STZ+FST) or treated with insulin 
(STZ+FST–INS), clonazepam (STZ+FST–CNZ) or insulin + clonazepam 
(STZ+FST–INS–CNZ) (n=9–10) and controls (Control+FST) (n=9). Data 
represent mean ± SEM * p<0.05 compared to the control groups; # p < 0.05 
compared to the STZ group (ANOVA followed by DUNCAN Test).

Figure 2: Taurine level in plasma from streptozotocin-induced diabetic rats 
submitted to the forced swimming test not treated (STZ+FST) or treated 
with insulin (STZ+FST–INS), clonazepam (STZ+FST– CNZ) or insulin + 
clonazepam (STZ+FST–INS–CNZ) (n=9–11), and controls (n=8). Data 
represent mean ± SEM * p<0.05 compared to the control groups; # p<0.05 
compared to the STZ group (ANOVA followed by DUNCAN Test).
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improvement of insulin sensitivity [1,33]; stimulation of insulin 
secretion (by up regulating the expression levels of genes involved 
in the secretion of insulin and/or by inhibiting ATP-sensitive K+ 
channels) [23,34]; anti-oxidation (by protecting the mitochondrial 
excessive superoxide generation through the conjugation with the 
key uridine moiety of mitochondrial 5-taurinomethyluridine) [35]; 
and anti-inflammation [36,37]. 

Moreover, another mechanisms are also described, like anti-
oxidation (by protecting the mitochondrial excessive superoxide 
generation through the conjugation with the key uridine moiety 
of mitochondrial 5-taurinomethyluridine (tRNALeu) [35]; and 
anti-inflammation (by suppressing the secretion of diabetes related 
cytokines including Tumor Necrosis Factor (TNF-α) and Monocyte 
Chemotactic Protein (MCP-1) [36,37]. It has been shown that taurine 
supplementation modulates glucose homeostasis and regulates 
insulin release from pancreatic beta cells, improving the glycemic 
profile in diabetic individuals [22-24]. 

It was verified a significant decrease of plasma taurine levels 
in diabetic rats submitted to FST, as well as a negative correlation 
between glycemia and plasma taurine levels. Our results are in 
agreement with the literature, suggesting that diabetes and depressive-
like behavior status is really a plasma taurine-deficient condition [13]. 
Taurine deficiency in plasma from diabetic patients can be explained 
by the low intestinal absorption rates and high renal excretion rates of 
taurine in these patients [6]. In addition, declines of this amino acid 
levels are observed in the liver of diabetic animals [38]. Moreover, it 
was evidenced that the activities of taurine transporters are inhibited 
in high glucose conditions [39] and demonstrated that its intracellular 
concentration was depleted in response to the intracellular 
accumulation of sorbitol [21]. Therefore, the bioavailability of taurine 
is low in patients with diabetes and taurine deficiency may be one 
reason of diabetes development [2]. 

Our results also showed that the associated treatment of insulin 
plus clonazepam reversed plasma taurine concentrations to control 
levels, having a protecting action upon this process. One hypothesis 

to explain this effect is that the association insulin plus clonazepam 
can be acting as an antioxidant treatment in this experimental model, 
what could contribute to maintain plasma taurine at levels similar 
to controls, since taurine is an important antioxidant. In previous 
studies published by our research group, treatment with insulin plus 
clonazepam prevented oxidative damage in STZ rats submitted to 
FST [27,30]. 

In this study, taurine concentration was determined in cerebral 
cortex of the animals since taurine is considered one the most 
important intracellular osmolytes in the brain [40] and in the diabetic 
state, elevated glucose levels may disturb cellular osmoregulation [41]. 
It was verified that brain taurine levels were significantly increased in 
untreated diabetic rats submitted to the FST. Furthermore, a negative 
correlation between plasma and cerebral cortex taurine levels was 
observed in STZ-rats submitted to FST, demonstrating that in this 
experimental animal model of diabetes and depression occurs a 
deficiency of taurine in plasma which could be associated with a high 
brain taurine uptake. 

The increased extracellular levels of glucose in diabetes 
represent an osmotic stress for the cells that could result in cellular 
dysfunctions [41] and even in diabetic cerebral edema, with death 
or severe neurological squeal [42]. The findings of our present 
study are extremely important, providing evidence the hypothesis 
that hyperglycemic status modify the taurine flux from brain cells, 
probably increasing sodium and decreasing potassium concentrations 
[43], which are associated with changes in the neuro-osmosregulation 
and hyperosmotic insults [42] or through changes in the fluidity 
of diabetic rat brain synaptossomal lipids [44], what will be better 
studied in the future. 

On the other hand, it was observed that the treatment with insulin 
reverted brain taurine concentrations to control levels. Our results 
are in accordance with data from literature showing that diabetic 
rat’s present increased synaptossomal taurine uptake and therefore, 
higher brain taurine levels compared with normoglycemic control 
animals. Treatment with insulin was able to restore synaptossomal 
taurine uptake to the level observed in normoglycemic controls, 
probably by normalizing the serum glucose concentrations [45]. 
Besides, it was not observed modifications in brain taurine levels 
in STZ+FST rats treated with clonazepam. This finding could be 
explained by the fact that clonazepam does not alter blood glucose 
in diabetic animals, consequently not interfering in the taurine flux 
in brain cells and, therefore, maintaining the neuro-osmosregulation 
presented in the hyperglycemic rats and the high cerebral cortex 
taurine concentrations. 

The hypothesis that the changes observed in brain and plasma 
taurine concentrations in this experimental animal model of 
diabetes and depression could be occurring as a result of GABA 
neurotransmission cannot be discarded. GABA cerebral levels will 
be measured in future to elucidate this hypothesis. Alterations in 
the taurine concentrations are intrinsically linked to changes in the 
levels of GABA, since taurine is structurally related to GABA and 
acts as an agonist for GABAA receptors, increasing plasma and brain 
GABA levels [1,10]. In this context, it is also possible to establish 
the hypothesis that taurine and clonazepam might be competing 
for the same receptor, what should be better investigated in the 

Figure 3: Taurine level in cerebral cortex from streptozotocin-induced 
diabetic rats submitted to the forced swimming test not treated (STZ+FST) or 
treated with insulin (STZ+FST–INS), clonazepam (STZ+FST–CNZ) or insulin 
+ clonazepam (STZ+FST–INS–CNZ) (n=7–11), and controls (n=8). Data 
represent mean ± SEM * p<0.05 compared to the control groups; # p<0.05 
compared to the STZ group (ANOVA followed by DUNCAN Test).
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future. Furthermore, it is noteworthy that the endocrine pancreas is 
regulated by glutamate and GABA to control insulin and glucagon 
release through α- and β-cells [46] and the elevated glucose levels 
stimulate insulin and GABA release in β-cells [47,48]. 

In summary, our findings showed that taurine concentrations 
are decreased in plasma and increased in cerebral cortex in diabetic 
rats under depressive-like behavior, demonstrating that in this 
experimental animal model occurs a plasma taurine-deficient 
condition and a brain high taurine uptake condition, what can 
be implicated in the pathophysiology of diabetes and depression. 
Treatment with insulin and/ or clonazepam was able to correct this 
disbalance, contributing to restore taurine homeostasis in diabetic 
rats under depressive-like behavior, what can be relevant for the 
understanding of diabetic encephalopathy.
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