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Abstract

High blood glucose levels can affect the body’s organs, causing 
blindness, renal illness, and heart and kidney diseases. Globally, 
Diabetic patients experience a mortality rate of 38% yearly.  Ma-
chine Learning methods are used in the literature to predict diabe-
tes. The prediction of machine learning models can assist doctors 
in making early decisions. This study employed the Neural Oblivi-
ous Decision Ensembles (NODE), Xtreme Gradient Boosting (XGB), 
AdaBoost, and Support Vector Machine (SVM) models to diagnose 
diabetes. An early-risk diabetes dataset is utilized in this study to 
conduct the experiments. The principal component analysis meth-
od is employed to extract the features. The performance metrics 
for evaluating machine learning classifiers are accuracy, precision, 
recall, and f score. The experimental results of the learning models 
show that the XGB model has achieved higher prediction results 
than the SVM, AdaBoost, and NODE. These findings conclude that 
the utilization of this approach assists the stakeholders in the diag-
nosis of early diabetes.Introduction

High blood sugar is a leading factor of death, depicting dia-
betes as a destructive chronic illness and creating an alarming 
condition. According to WHO, the number of diabetic patients 
increased significantly from 108 million in 1980 to 422 million 
in 2014 [1]. About 8.5% of adults and 30.3% of the U.S. popu-
lation are affected by diabetes [2]. China and India, being the 
most populous countries, have the highest diabetes rates of 
98 million and 65.1 million cases, respectively [3]. Both types 
of diabetes are serious conditions. Type 1 diabetes attacks the 
pancreas and affects the formulation of insulin in the body; type 
2 diabetes includes insulin resistance, which stops the body 
from using insulin, causing high blood glucose levels [4]. Dia-
betes cannot be cured but it can be treated, early diagnosis can 
minimize the complication risks [5]. A balanced diet and early 
detection can increase an individual’s lifespan. Detecting diabe-
tes at an early stage based on a doctor’s assessment can be in-
accurate because of gaps in understanding the related patterns 
[6]. However, predictive analytics can improve the identification 
of at-risk individuals, anticipate issues, and enhance treatment 
results [7]. Predictive analytics can identify high-risk individuals, 
predict complications, and enhance care. A doctor can deter-
mine the most effective treatment course for everyone affected 
by diabetes, leading to better outcomes [8]. Therefore, a Com-
puter-Aided Diagnosis (CAD) system can help physicians make 
better decisions for diagnosing diabetes at an early stage. [9]. 
The CAD system analyzes blood sugar levels, haemoglobin A1C 
levels, and other useful clinical data to detect diabetes and sug-
gest necessary actions depending on the information obtained.

The Neural Oblivious Decision Ensembles (NODE), Xtreme 
Gradient Boosting (XGB), AdaBoost, and Support Vector Ma-
chine (SVM) models are used in this study to predict diabetes—
label encoder method to convert the text category into numer-
ic. The standard scalar method converts the feature value into 
the same between 0 and 1.

The structure of the paper is described as Section 2 explains 
the details of a proposed method for diabetes prediction. Sec-
tions 3 and 4 explain the experimental results and conclusion 
of the paper.

Proposed Methods

This section briefly describes the proposed machine learning 
models used for diabetes prediction. Figure 1 shows the archi-
tecture diagram, which shows that we used the early diabetes 
risk dataset as an input for the data pre-processing module. In 
data pre-processing, the label encoding, and standard scalar 
method are applied for data preparation. The prepared data is 
transmitted as input to proposed models for diabetes classifica-
tion. The performance of a machine learning model is analyzed 
using the accuracy, precision, recall, and f score.

Data Preprocessing

The data preprocessing method cleans and prepares the raw 
data for the learning model. In this study, the scikit label en-
coder method converts the text category into numeric, and the 
z-score method normalizes the data into the same scale.
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Machine Learning Models

This study utilized the NODE, XGB, Adaboost, and SVM mod-
els to classify diabetes. These models are used with and without 
the Principal Component Analysis (PCA). The PCA method ex-
tracts features and transforms them into n components, where 
n is a target feature space. 

Node Neural Oblivious Decision Ensembles

The NODE [11] is a robust machine-learning architecture 
that merges decision trees with neural network architectures to 
improve predictive accuracy. By utilizing an oblivious decision 
tree, NODE efficiently captures complex patterns in the data, 
making it highly suitable for classification and regression tasks. 

Xtreme Gradient Boosting

Xtreme Gradient Boosting (XGB) [12] is a powerful and ef-
fective gradient-boosting framework that outperforms clas-
sification and regression. It employs parallel processing and 
advanced regularization techniques to boost model robustness 
and prevent overfitting.

AdaBoost

Adaptive boosting, known as AdaBoost [13], is a robust ma-
chine-learning algorithm that integrates multiple weak classi-
fiers to create a robust classifier. In a later iteration, it adjusts 
the weights of misclassified instances, focusing more on chal-
lenging cases to enhance the performance for both classifica-
tion and regression.

Support Vector Machine 

The SVM [14] is a supervised machine-learning algorithm 
that classifies cases by finding the optimum hyperplane that 
maximizes the margin between data points. It uses the kernel 
function to map the data into a higher-dimensional feature 
space for better class separation.

Evaluation Metrics

This study validated the performance of a machine learning 
model using accuracy, precision, recall, and f-score evaluation 
metrics.

Results and Discussion

The table presents the experimental outcomes of the pro-
posed classifiers for classifying diabetes with PCA feature ex-
traction. It shows four different classifiers evaluated using the 
given metrics: Accuracy, Precision, Recall, and F-score. Results 
explain that XGB is highly effective, surpassing all the models 
with the highest prediction performance. AdaBoost and NODE 
also performed well, with high scores across all metrics, and 
SVM showed lower performance than all other proposed mod-
els, with moderate scores across all metrics.

The table presents the experimental outcomes of the pro-
posed classifiers for classifying diabetes with PCA feature ex-
traction. It shows four different classifiers evaluated using the 
given metrics: Accuracy, Precision, Recall, and F-score. Results 
explain that XGB is highly effective, surpassing all the models 
with the highest prediction performance. AdaBoost and NODE 

Figure 1: Comparison graph of Machine Learning Model for Diabe-
tes Classification (with PCA feature extraction) based on accuracy.

Table 1: Experimental Results of a Machine Learning Model for 
Diabetes Classification (with PCA feature extraction).

Model Name Accuracy Precision Recall F score

AdaBoost 0.9423 0.9469 0.9423 0.9431

SVM 0.8654 0.8654 0.8654 0.8654

XGB 0.9615 0.9629 0.9615 0.9618

NODE 0.9327 0.9334 0.9327 0.9330
Table 2: Experimental Results of a Machine Learning Model for 
Diabetes Classification (without PCA feature extraction).

Model Name Accuracy Precision Recall F score

AdaBoost 0.9135 0.9143 0.9135 0.9138

SVM 0.8942 0.8952 0.8942 0.8946

XGB 0.9808 0.9819 0.9808 0.9809

NODE 0.9423 0.9439 0.9423 0.9427

Figure 2: Comparison graph of Machine Learning Model for Diabe-
tes Classification (with PCA feature extraction) based f score.

Figure 3: Comparison graph of Machine Learning Model for 
Diabetes Classification (without PCA feature extraction) based on 
accuracy.
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Figure 4: Comparison graph of Machine Learning Model for Diabe-
tes Classification (without PCA feature extraction) based on fs core.

also performed well, with high scores across all metrics, and 
SVM showed lower performance than all other proposed mod-
els, with moderate scores across all metrics.

This figure compares the F-score of proposed machine-
learning models used for diabetes classification with PCA fea-
ture extraction. The chart shows that XGB achieves the highest 
f-score of 96.18% with AdaBoost and NODE having slightly less 
f-score, while SVM has the lowest f-score among all the pro-
posed classifiers.

This table represents the experimental outcomes of four 
proposed machine-learning classifiers for classifying diabetes 
without PCA feature extraction. It can be seen from experimen-
tal results that the XGB is a highly effective classifier in this case 
as well, as it receives the highest score across all the metrics; 
NODE and AdaBoost also performed well, while SVM shows the 
lowest performance than other classifiers. The results also indi-
cate that XGB outperforms with or without PCA extraction, SVM 
and NODE enhance their performance without PCA extraction, 
and AdaBoost slightly decreases its performance when PCA is 
not used.

This figure compares the Accuracy of proposed machine-
learning models used for diabetes classification without PCA 
feature extraction. The chart shows that XGB achieves the 
highest accuracy of 98.08%, demonstrating its effectiveness in 
diabetes classification; NODE also performs well but is slightly 
lower than XGB. AdaBoost has a moderate performance, and 
SVM has the lowest performance rate of all the classifiers.

This figure compares the F-score of proposed machine-
learning models for diabetes classification without PCA feature 
extraction. The chart shows that XGB leads in performance by 
achieving the highest F-score of 98.09%, showing efficiency in 
diabetes classification. NODE also performs well but is slightly 
lower than XGB. AdaBoost has a moderate performance, and 
SVM has the lowest performance rate of all the classifiers.

Conclusion

The computer-aided diagnosis systems are crucial to diag-
nose the diseases. These computer-aided diagnosis systems as-
sist doctors in detecting or diagnosing the disease. Diabetes is 
a chronic disease, and detection of this disease at the earliest 
stage is crucial to saving a patient's life. This study employed 
machine learning-based methods for diagnosing diabetes. The 
experiment shows that the XGB model has achieved higher pre-

diction results than other models. In contrast, the SVM model 
has achieved lower prediction accuracy than the other proposed 
models. The experimental findings show that this method helps 
stakeholders in the early diagnosis of diabetes.  In the future, 
we can utilize some wrapper-based feature selection methods 
to select the optimal feature from the dataset. Further, we will 
use the ensemble model for the prediction of diabetes.
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