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Abstract

Aneurysmal subarachnoid hemorrhage (SAH) and its sequela is a 
devastating disease process often leading to poor clinical outcome. The 
development of cerebral vasospasm (CV) and other delayed ischemic 
neurologic deficits (DINDs) determine the prognosis of patients after SAH. As a 
result, several studies have investigated the etiology of CV and DINDs in order 
to establish biological biomarkers that are clinically relevant for diagnostic and/
or monitoring purposes. Despite our knowledge of the disease progression and 
our understanding of the role of inflammation, endothelial and vascular smooth 
muscle cell dysfunction, brain injury, and genetics, no candidate biomarker is 
routinely being used in the clinic. We review the current literature pertaining to 
biomarkers of CV and their clinical utility in the management of SAH patients.
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activation, and various signaling pathways [5]. As a result, the 
post-SAH inflammatory response has become a target of interest in 
identifying the molecular and cellular biomarkers of CV.  

Intercellular Adhesion Molecules
ICAMs play a critical role in the inflammatory response to injury, 

thereby making them potentially attractive markers for the prediction 
of CV in the setting of post-SAH inflammation [6]. Multiple animal 
models have identified leukocyte-endothelial cell interactions to play 
a role in the pathogenesis of CV [7, 8]. Three families of ICAMs in 
particular, the selectins, integrins, and the immunoglobulin super 
family, may serve as potential clinically relevant biomarkers.

Although ICAMs have been shown to be upregulated following 
SAH [9-14], conflicting studies on its role in CV and DINDs have been 
reported. Polin et al. found significantly elevated CSF levels of ICAM-
1, vascular cell adhesion molecule-1 (VCAM-1), and E-selectin after 
SAH compared with control patients [9]. Interestingly, in the same 
study, E-selectin was the only adhesion molecule significantly elevated 
in the CSF of patients who later developed CV compared with those 
patients with uncomplicated SAH [9]. Kaynar et al. reported that 
ICAM-1 and VCAM-1 levels in the CSF and serum of patients with 
SAH were significantly elevated compared with control patients with 
hydrocephalus [10]. Nissen et al. reported no significant difference in 
serum concentration in several adhesion molecules including ICAM-
1, VCAM-1, platelet endothelial cell adhesion molecule (PECAM-1), 
and E-selectin in patients who developed DINDs after SAH 
compared with those who did not [14]. However, the authors were 
able to show significant levels of serum P-selectin concentrations and 
lower levels of L-selectin concentrations in patients with DINDs [14]. 
Furthermore, investigating ICAM-1 levels, Mocco et al. and Mack et 
al. were both able to demonstrate increased soluble ICAM-1 levels in 
patients with SAH compared with control patients. In their studies, 
patients who later developed CV showed significant levels of ICAM-
1 during the perivasospasm period (e.g., first 2 weeks) [11, 12], with 

Introduction
Aneurysmal subarachnoid hemorrhage (SAH) remains a 

devastating disease, with a majority of patients suffering a poor 
outcome. Despite advances in microsurgical and endovascular 
therapies, patients are frequently left with disabling neurologic 
deficits, resulting in a diminished quality of life and a loss of 
independence. For those that survive the initial aneurysm rupture, 
a significant percentage of persistent focal and/or cognitive deficits 
are the result of cerebral vasospasm (CV) and delayed ischemic 
neurologic deficits (DINDs) [1]. CV, which occurs in 70% of all 
SAH patients, is clinically significant in approximately 30% of the 
population and is the most serious complication in those surviving 
the first 24 hours following aneurysm rupture [2].  Importantly, 
CV accounts for a disproportionately high morbidity and mortality 
among young persons. Although the etiology of CV remains unclear, 
several studies have suggested that inflammation, endothelial 
dysfunction, response to brain injury, and genetic markers all play 
a role in CV pathogenesis. Despite our knowledge of the disease 
progression, there are no established biological biomarkers currently 
being used in the clinic for diagnostic or monitoring purposes. We 
review the current literature pertaining to biomarkers of CV and their 
clinical utility in the management of SAH patients.

Inflammation
Aneurysm rupture results in the forceful entry of arterial blood 

into the subarachnoid space, leading to the circulation of erythrocytes 
and plasma throughout the cerebrospinal fluid (CSF). With time, these 
red blood cells are lysed, thereby creating a cytotoxic environment 
rich in free hemoglobin (Hgb) and the products of heme breakdown 
[3]. Through a series of complex cellular and molecular events, these 
byproducts of erythrocyte lysis trigger an immune response [4]. 
This inflammation cascade involves accumulation of immune cells 
through the expression of specific intercellular adhesion molecules 
(ICAMs), cytokine production, immunoglobulin and complement 
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delayed ICAM-1 elevation (e.g., peak levels 8-12 days after SAH) 
correlating with poor clinical outcome [11].

The clinical utility of the two major integrins facilitating cell-cell 
adhesion and interaction, lymphocyte function-associated antigen 1 
(LFA-1) and macrophage-1 antigen (Mac-1), has yet to be evaluated 
in humans. However, monoclonal antibodies against these integrin 
family members using various SAH animal models have demonstrated 
a decrease in inflammatory response and CV and suggest potential 
candidate biomarkers. By blocking leukocyte migration into the 
subarachnoid space, CV was prevented in rats [7], rabbits [15], and 
cynomolgus monkeys [16]. Remarkably, these studies suggest that 
leukocytes play an important role in the pathogenesis of CV, since CV 
was prevented in the primate model despite the unaltered presence of 
hemoglobin in the subarachnoid space [16].

Cytokines
In response to SAH, activation of microglia and astrocytes 

result in the proliferation and the secretion of three important 
cytokines: tumor necrosis factor-α (TNF-α), interleukin-1-beta (IL-
1β), and interleukin-6 (IL-6) [17].  Multiple authors have reported 
the detection of these cytokines in the CSF of SAH patients [18-24]. 
Using cerebral microdialysis to measure CSF TNF-α levels, Hanafy et 
al. demonstrated a progressive rise in brain interstitial TNF-α levels 
4 – 6 days after SAH [25]. Mathiesen et al. reported that patients with 
poor outcome after SAH had elevated TNF-α levels in their CSF on 
post-SAH days 4 – 10 [19]. In addition, studies by Fassbender et al. 
[23] and Chou et al. [24] also linked TNF-α levels with poor clinical 
outcome. Specifically, Chou et al. determined that elevated serum 
TNF-α levels 2-3 days after SAH were associated with a poor clinical 
outcome three months post-hemorrhage. Interestingly, in the same 
study, TNF-α levels were not associated with vasospasm [24]. 

Several studies have shown increased IL-6 levels in CSF 
following SAH [18, 21, 22, 26]. Patients with CV had significantly 
elevated IL-6 levels compared to patients without CV [20, 26, 27]. 
In addition, numerous studies have identified significantly elevated 
CSF levels of IL-6 in the acute phase (days 0-6) following SAH [18, 
20-22, 26, 27]. As a result, CSF IL-6 concentration early in the disease 
progression, may predict CV development following SAH [26]. High 
concentrations of CSF IL-6 have also been observed in patients who 
developed DINDs, suggesting IL-6 CSF concentration as a potential 
predictor of clinically significant CV [28].

Studies investigating levels of IL-1β in SAH patients are 
inconsistent. Whereas, several studies found no detectable IL-1β in 
serum or CSF of SAH patients [21, 29], Hendryk et al. reported a 
significant increase in CSF IL-1β in SAH patients who developed CV 
and DINDs [22]. IL-1 receptor antagonist (IL-1ra), a potent inhibitor 
of IL-1, has been shown to be elevated in the CSF of patients after 
SAH [30] and may be associated with delayed ischemic events and 
poor clinical outcome [19].

The elevation of additional cytokines following SAH has been 
observed, however, the significance of these molecules as they 
relate to CV has yet to be determined. Interleukin-8 (IL-8) has 
been shown to be elevated in the CSF of patients with SAH [20, 
21, 29], although Gaetani et al. found no association with CV [20]. 
The levels of monocyte chemoattractant protein-1 (MCP-1) were 

found to be significantly higher in patients with SAH than in those 
with unruptured aneurysms [20, 31]. Although both studies found 
higher MCP-1 levels in CSF following SAH, the two studies conflict 
in determining an association with CV. Kim et al. found a significant 
elevation of MCP-1 levels in patients with angiographically confirmed 
vasospasm [31]. Conversely, Gaetani et al. found no significant 
difference in MCP-1 levels between patients with or without CV [20]. 
Finally, in a small study conducted by Mathiesen et al., the authors 
identified increased neopterin concentrations in both the serum and 
CSF of patients suffering from DINDs compared to uncomplicated 
SAH cases [32].

C-reactive Protein
C-reactive protein (CRP) is a sensitive inflammatory marker 

that has been studied in relation to cardiovascular diseases [33, 34]. 
CRP is synthesized by hepatocytes in response to several cytokines 
including IL-1, IL-6, and TNF-α [35]. As mentioned above, these 
cytokines have been shown to be associated with CV pathogenesis 
and are currently being evaluated as candidate biomarkers. Romero 
et al. demonstrated higher CRP serum levels following SAH to be 
associated with worse clinical outcomes and neurologic deficits [36]. 
CRP levels were significantly elevated in the early stages (days 3-7) 
of disease progression, making CRP a potentially attractive clinically 
relevant marker for the early identification of those at risk for CV and 
DINDs [36].

Myeloperoxidase (MPO)
Myeloperoxidase (MPO) is a liposomal enzyme released by 

leukocytes, particularly by activated neutrophils, in response to a 
stimulus. Several studies have demonstrated a correlation between 
serum MPO and risk of myocardial infarction in patients with 
coronary artery disease [37-39]. Furthermore, serum MPO has been 
shown to have predictive power in evaluating prognosis in patients 
following an acute myocardial infarction [40-42]. 

Given the association between MPO levels and myocardial 
ischemic events, Lim and colleagues evaluated MPO as a potential 
biomarker of CV [43]. Serum MPO levels were elevated in SAH 
patients, compared to patients with unruptured aneurysms. In the 
same study, elevated serum MPO correlated with clinically significant 
CV in SAH patients. Furthermore, elevated MPO levels preceded or 
occurred on the day of symptomatic CV onset in the majority of 
patients. Based on these results, Lim and colleagues concluded that 
inflammation played an important role in CV. They also concluded 
that many of the SAH patients who did not show clinically evident CV 
had a subclinical level of vasospasm occurring, which in turn caused 
their MPO levels to rise compared to those patients with unruptured 
aneurysms [43]. As a result, this early rise in serum MPO may be a 
viable marker for detecting CV prior to the onset of symptomatology 
[43]. 

Complement and Circulating Immune 
Complexes

There is strong clinical evidence to support complement and 
circulating immune complexes (CIC) as potential biomarkers for 
CV. Pellettieri et al. observed that patients with radiographic and/
or clinical CV had a significantly higher frequency (52%) of CIC 
compared to SAH patients without CV (9%) [44]. Follow-up data 
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confirmed this association and determined that CIC levels during 
the first week after SAH correlated with CV [45]. Another study 
also determined that CIC levels were associated with CV and poor 
clinical outcome [46]. In addition, complement component C3d has 
been shown to be associated with CV [46] and C3a and C4a have 
been reported to be associated with DINDs [47]. In contrast, Kawano 
et al. reported a decrease in levels of CH50, C3, and C4 in patients 
who developed CV and DINDs [48]. Finally, the lectin complement 
pathway (LCP) has recently been shown to be activated in patients 
after SAH and has been linked to SAH severity and development of 
CV [49].

Endothelial and Vascular Smooth Muscle 
Cell Dysfunction
Endothelin

The inflammatory response also results in the release of multiple 
factors responsible for vascular smooth muscle cell (VSMC) 
contraction [50]. Endothelin (ET) is one of the most potent 
vasoconstrictors known [51] and has been investigated in relation 
to SAH and CV. ET has been measured in the CSF and plasma of 
patients with SAH using a variety of methods. There are conflicting 
studies on ET levels in CSF and plasma of SAH patients and their 
relationship to the development of CV and DINDs [52-61]. Kessler 
et al. reported a significant rise in ET levels in the CSF, but not in 
the plasma of patients with SAH who developed CV [53]. Additional 
studies have also found elevated ET CSF levels to correlate with 
poor clinical outcome [54, 55, 58]. Interestingly, Mascia et al. found 
high CSF ET levels in patients with a poor neurological condition 
unrelated to CV. In fact, the authors demonstrated low ET levels 
in patients with clinically significant vasospasm. The authors of the 
study concluded that the rise in CSF ET levels may be the result of 
severe neuronal damage regardless of mechanism (e.g., vasospasm or 
primary hemorrhagic event) [54]. Another study also determined that 
the rise in CSF ET levels appear to be the result of cerebral ischemia 
rather than the result of CV [59]. 

Oxidative stress
Nitric oxide (NO) is a signaling molecule involved in numerous 

cellular functions including regulating vascular tone. As a potent 
vasodilator, NO and NO-containing compounds counteract the 
vasoconstricting effects of ET [62]. During the first 24 hours 
following SAH, NO levels fall resulting in constriction of the cerebral 
vasculature [63]. Temporal changes in CSF nitrite/nitrate (NOx) 
levels in patients after SAH have been studied with variable results 
[64, 65]. For instance, Jung et al. and Ramesh et al. found lower NOx 
levels in patients who developed CV compared to those patients who 
did not develop CV [66, 67], while Petzold et al. reported higher 
NOx levels in patients with SAH compared to controls [68]. There 
is also inconsistency regarding NOx levels and neurologic outcome. 
Whereas Rejdak et al. found that patients with good clinical outcome 
had significantly lower CSF NOx levels compared with those with 
worse clinical outcome [69], Lin et al. reported no correlation 
between CSF NOx levels and poor clinical outcome in SAH patients 
[70]. Measuring plasma NOx levels, Ramesh et al. demonstrated that 
patients with worse clinical outcome had significantly lower NOx 
levels compared to controls [67]. Adding to the discrepancy is the 
report by Staalso et al. in which the authors found that temporal 

changes in NOx levels were dependent on the World Federation of 
Neurological Societies SAH grade. Initially, the NOx levels were 45% 
higher in the first 5 days in poor grade patients compared to grade 
1 patients, however, on day 11 to 16, the NOx level in poor grade 
patients declined to below grade 1 patients [71].

Asymmetrical dimethylarginine (ADMA) is an endogenous 
inhibitor of several nitric oxide synthase (NOS) family members. 
CSF ADMA levels seem to correlate with development of CV in both 
animal [72] and human studies [66, 73]. While CSF ADMA levels 
remained unchanged in patients with SAH who did not develop CV, 
Jung et al. reported an increase in CSF ADMA levels in those patients 
who developed CV 3 – 9 days after SAH. These levels then decreased 
gradually between days 12 – 21 [66]. Similar to ADMA levels in the 
CSF, plasma ADMA levels were found to increase over the first week 
after SAH [74]. In addition to studying NOx levels, Staalso et al. also 
reported that low plasma arginine/ADMA ratios predict mortality 
after SAH [71].

Additional mediators of the oxidative stress response have been 
investigated as potential biomarkers of SAH and CV. The superoxide 
dismutase family (SOD), is downregulated following SAH [75] while 
malondialdehyde (MDA), which is increased following SAH, has 
been demonstrated to be higher in SAH patients with poor clinical 
outcome [75, 76]. Another antioxidant system that utilizes glutathione 
peroxidase, which is involved in reducing lipid and hydrogen 
peroxide, appears to increase in activity but not concentration 
following SAH [77, 78]. Increased evidence of oxidative stress was 
observed in the CSF of patients with CV despite the increased activity 
of glutathione peroxidase, suggesting high reactive oxygen species 
or the antioxidant pathways may be involved in the pathogenesis of 
vasospasm [78].  

Neuropeptides
Neuropeptides have been evaluated in SAH and CV pathogenesis 

due to their vascular tone properties. However, inconsistent results in 
the levels of neutropeptides detected in patients with SAH have led to 
controversy surrounding this topic. Varying levels of calcitonin gene 
related peptide (CGRP), substance P, vasoactive intestinal peptide 
(VIP) and neuropeptide Y (NPY) have all been reported by various 
investigators with no clear consensus on an association [50]. Juul et al. 
reported high levels of CGRP in SAH patients compared to controls 
and concluded that this increase may be a compensatory mechanism 
to avoid CV by dilating the cerebral vessels [79]. However, Edvinsson 
et al. evaluated CGRP levels in SAH patients and demonstrated in 
two separate studies that lower levels of CGRP levels were found in 
SAH patients compared to controls [80, 81]. Similar to these results, 
investigators studying VIP and substance P using human studies and 
animal experiments have also demonstrated a gradual reduction in 
these neuropeptides [79, 82]. Although Hara et al. demonstrated a 
clear reduction in VIP and substance P in rats, the reduction of these 
neuropeptides in monkeys with SAH was not as clear, since there was 
also a reduction observed in the sham monkeys [82]. Based on these 
animal results, there is no consistent evidence for the reduction in 
these neuropeptides. Furthermore, in the aforementioned studies 
evaluating CGRP, Juul et al. and Edvinsson et al. also investigated 
levels of VIP and substance P and found no significant differences in 
levels between SAH patients and controls [79, 81]. Finally, although 
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there are conflicting reports on levels of NPY in SAH patients [83, 
84], two recent studies demonstrated higher levels of NPY in SAH 
patients compared to controls [85] with higher levels found in 
patients with CV than in those patients without CV [86].

Another neuropeptide, adrenomedullin, has been shown to be 
elevated in SAH patients and is predictive of neurological outcome 
[87-90]. However, there are inconclusive results for adrenomedullin 
levels and development of CV with Kikumoto et al. and Fujioka et 
al. reporting no association of plasma adrenomedullin levels with 
CV, while Wijdicks et al. reporting elevated plasma adrenomedullin 
levels 5 days after SAH in patients who developed CV [87, 88, 91]. 
Interestingly, Fujioka et al. demonstrated that CSF adrenomedullin 
levels may be associated with CV [91].

Although secreted by the heart in response to excessive stretching 
of cardiomyocytes, Brain natriuretic peptide (BNP) has been shown 
to be elevated in SAH patients and correlate with clinical course 
including developing CV and DINDs [92-95]. Interestingly, Taub et 
al. reported high BNP levels associated with cerebral infarction, and 
in fact, levels were more prominent in patients without angiographic 
vasospasm [96].

Brain Injury
Cellular damage occurs as a consequence of SAH and its sequela, 

whereby various factors are released into the subarachnoid space, 
many of which may serve as potential candidate biomarkers. Under 
normal physiological conditions, concentrations of these factors are 
typically negligible in both the CSF and serum. Two of these brain 
injury factors that have been investigated for their association with 
SAH pathogenesis are S100B, a protein synthesized by astrocytes 
and Schwann cells, and neuron-specific enolase (NSE), an enzyme 
synthesized by neurons. Similar to other candidate biomarkers 
mentioned previously, there are inconclusive results regarding S100B 
and NSE as biomarkers for CV. While several studies have validated 
S100B levels as a predictor of bad clinical outcome [97-101], the 
predictive power of S100B for development of CV is inconsistent, 
as Mortiz et al. and Amiri et al. reported no association [97, 102], 
whereas Oertel et al. reported lower S1000B levels in SAH patients 
who developed CV [98]. An increase in NSE levels follows SAH; 
however, there appears to be no association with CV [97, 98, 101].

Other brain injury markers investigated for their link to SAH 
and CV include glial fibrillary acidic protein (GFAP), neurosin or 
kallikrein-related peptidase 6 (KLK-6), neurofilaments (NF), and 
ubiquitin C hydrolase 1 (UCHL1). Temporal changes are vital in 
using GFAP as a potential biomarker with several studies reporting 
increased levels within 1-6 hours after onset of SAH but decreasing 
later in disease progression [103]. Decreased serum levels of KLK-6 
were found in patients with SAH, especially in those patients who 
succumbed to the disease [104]. Neurofilaments and phosphorylated 
forms of NF are increased in SAH patients and seem to correlate with 
poor clinical outcome [68, 105-107]. Finally, Lewis et al. reported 
that UCHL1 levels measured 10 days after a SAH were predictive of 
neuronal loss and poor clinical outcome [108].

Genetic Biomarkers
Several genetic markers have been reported to be associated with 

SAH and CV. Polymorphisms within the endothelial nitric oxide 
synthase (eNOS) gene (e.g., intron 4 27-base pair variable-number-
tandem-repeat (27 VNTR) and the promoter single-nucleotide-
polymorphism (-786T>C SNP)) have been shown to be associated 
with SAH and CV. The role of the T and C alleles and their association 
with CV remains unclear. Starke et al. reported that patients with 
the T allele of eNOS were more likely to develop severe CV [109]. 
However, Ko et al. and Khurana et al. reported that the C allele of 
eNOS was associated more with developing CV [110, 111]. The 
eNOS 27 VNTR polymorphism predicts susceptibility to intracranial 
aneurysm rupture [110] but is not associated with CV [111]. Another 
polymorphism that has been implicated as a risk factor for SAH is 
(-308 G<A SNP) in the TNF-α gene [112]. Finally, patients with 
the haptoglobin 2-2 phenotype had a significantly greater risk for 
developing CV than those with other haptoglobin phenotypes. 
Further, the haptoglobin 2-2 phenotype may predict clinical outcome 
[113, 114].

Miscellaneous Markers
Several additional molecules have been investigated as potential 

biomarkers for predicting risk for SAH or developing CV. Glucose 
cerebral metabolism and a calculated metabolic ratio (MR) were 
evaluated which demonstrated that the MR is a reliable indicator for 
risk of poor neurological outcome after SAH [115]. Apolipoprotein 
E (ApoE) has been reported to be lower in the CSF of patients with 
SAH compared with controls. In addition, CSF ApoE levels appear to 
correlate with neurological outcome [116]. Adiponectin levels were 
found to be lower in SAH patients [117, 118] and lower adiponectin 
levels may be associated with the development of delayed cerebral 
ischemia [118]. Zanier et al. studied the relationship between heart-
fatty acid-binding protein (H-FABP) and tau protein levels with 
severity and clinical outcome in SAH patients. They concluded that 
both H-FABP and tau protein levels correlated with the extent of 
brain ischemia, occurrence of CV, and neurological outcome [119].  
Investigating alpha-II-spectrin breakdown products (SBDP), Lewis 
et al. found an increase in CSF SBDP concentration up to 12 hours 
before the onset of CV [120]. YKL-40 levels in both the CSF and 
serum of SAH patients were elevated compared to controls [121, 
122], although there was no correlation found between YKL-40 
levels and development of CV [121]. Although Isman et al. reported 
observing elevated CSF chitotriosidase levels on days 5 and 7 after 
SAH; the authors did not find any correlation with chitotriosidase 
levels and CV or neurological outcome [123]. Serum magnesium 
levels were investigated in relationship to CV and clinical outcome 
after SAH with studies identifying no relationship [124, 125]. Finally, 
matrix metalloproteinases (MMPs) have the potential to offer an 
early diagnostic biomarker in the setting of CV after SAH [126].

Conclusion
While numerous biomarkers have been investigated for their 

predictive value in SAH and CV, there is no biomarker that is 
routinely used in the clinic. Until then, a better understanding of 
disease pathogenesis is needed before concise and robust biomarkers 
are identified and translated into clinical practice. With the current 
candidate biomarkers outlined in this review, additional studies 
evaluating the utility and effectiveness of these biological biomarkers 
in a prospective clinical trial is warranted. 
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